
Corpus-Driven Splitting of Compound Words

Ralf D. Brown
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3890 USA
ralf+@cs.cmu.edu

Abstract

A method is presented for splitting compound words into their constituents
based on cognate words in the other language of a parallel corpus. A minor ex-
tension to the method using a bilingual lexicon (which may be statistically derived
from the corpus) allows the decompounding of words that do not have cognates
in the other language. Further, the algorithm can produce, as a by-product, a
mapping from compound words in one language to phrases in the other language.

The method described in this paper is applied to an example-based machine
translation (EBMT) by decompounding the training corpus, and training both the
EBMT system and the bilingual lexicon it uses for subsentential alignment from the
decompounded corpous. Compared with the original corpus, the decompounded
corpus substantially reduces the incidence of word-alignment failure, resulting in a
modest overall improvement in performance.

1 Introduction

When dealing with parallel English-German texts in the medical domain, a large pro-
portion of the tokens (typically Latin- or Greek-derived medical terms) in the text
can be treated as cognates – except that the German version frequently combines the
equivalent of multiple English words into one compound word. If one can decompose
the compound words, various other processing and uses of the parallel text will be
simplified and/or enhanced. Examples of such applications are information retrieval,
where it is used in stemming (Braschler & Schäuble 2000), and subsentential alignment
as used in statistical and example-based machine translation (Brown et al. 1990; Brown
1999). Any algorithms which assume one-to-one correspondences between words, such
as Competitive Linking (Melamed 1997) or automated lexicon extraction (Brown 1997),
will also be improved by decompounding of compound words. Finally, text normal-
ization for a variety of applications, such as speech recognition (Adda et al. 1997;
Adda-Decker et al. 2000), can benefit from decompounding.

In this paper, we will describe a method which takes advantage of the ”cognateness”
of portions of a compound word with the corresponding individual words in the other
language. We then extend the method to work even when there is no cognate relation,
provided that a bilingual lexicon is available or can be statistially extracted from the
parallel text.



Cognate Letters

a e k cqn Z SC
d tj K CQN ä ae

D TJ p bf Ä AE
i y P BF ö o

I Y v f Ö O
j y V F ü uo

J Y z sc Ü UO

Figure 1: Letter Correspondences from German to English

2 Method

In describing the method, we refer to a “compounding” language LC and a “noncom-
pounding” language LN ; for the experiments reported below, these are German and
English.

To find the point at which to split a word in LC , concatenate pairs of adjacent LN

words and measure the similarity between the concatenated pair and the (suspected)
compound word. If the similarity is above a pre-selected threshold, examine the sim-
ilarities of various substrings of the compound word with each of the LN words to
determine the point at which to split the compound. Each half may then be submitted
recursively to the compound-splitting algorithm to attempt an overall split into more
than two parts.

The similarity measure used is a form of Longest Common Substring (LCS). It
allows for differing weights, making it what Tiedemann (1999) calls a Highest Score of
Correspondence. Specifically, a character pair Ei,Gj can have any of three weights:

• full weight if the two characters are identical,

• a reduced weight (0.9) if they are not identical but are listed as related (see
Figure 1), and

• an even lower weight (0.5) if the two characters are unrelated but one of them is
identical to its predecessor and its predecessor is related to the other character.

The last case accounts for letter doubling in one language which is not present in the
other.

The similarity score is computed using the standard dynamic programming ap-
proach as described in (Tiedemann 1999).

In addition to the similarity score, we use a coverage score, which is a modified
version of the similarity score. Instead of dividing by the length of the longer of the two
words, we divide by the length of the LN (English) word. This provides an indication of
the highest possible similarity score with any substring of the LC (German) compound.

Once a candidate word pair corresponding to the compound has been found, the
next task is to find the boundary between the portions of the compound representing



each of the words in the pair. First, find the shortest prefix of the compound which
maximizes the coverage score for the first word of the pair. Then, find the shortest suffix
of the compound with maximizes the coverage score for the second word of the pair.
The prefix and suffix define two boundaries, bnd1 and bnd2, which occur immediately
following the final character of the prefix and immediately preceding the first character
of the suffix, respectively. Note that the boundaries occur between letters.

The prefix is found by successively dropping the last letter from the (partial) com-
pound until the coverage score decreases; bnd1 is then set after the last character
removed from the compound. Similarly, the suffix is found by successively dropping
the first letter from the (partial) compound until the coverage score for the second word
of the word pair decreases. bnd2 is then set prior to the last character removed.

If bnd1 and bnd2 are the same, the compound has been split successfully, unless the
boundary falls on a point which has been defined as an invalid split, e.g. between the
“c” and “h” in “sch” for German. The software can optionally attempt to determine
invalid boundaries itself by counting initial and final letter bigrams of words in the
corpus, and disallowing the split if neither the two letters before the split nor the two
after the split have ever been encountered in the appropriate position in any word of
the corpus.

When bnd1 lies before bnd2, some letters are not accounted for as cognates of either
LN word. If a hyphen is the first or last letter in the gap between bnd1 and bnd2 (and
the gap is not too large), set the boundary to the position just after the hyphen. In the
absence of a hyphen, a small amount of knowledge about the compounding language
is required to determine where in the gap between bnd1 and bnd2 to place the split
point. For example, if the language inflects words by changing only word endings, we
can assign the entire gap (if not too large) to the first word of the pair if bnd2 is located
just prior to a letter which is cognate with the first letter of the second word of the
pair. Similarly for the case where the language inflects the beginnings of words. The
program can also be given a list of substrings which it should avoid splitting; if one of
these crosses bnd2, the boundary is set to that string’s beginning. Similarly, if one of
the substrings crosses bnd1, the boundary is set to the string’s end.

Should bnd1 fall after bnd2, we need to determine how much of the overlap is due
to a “missing” cognate letter which just happens to be present in the other half of the
compound word. First, if the overlap region contains a hyphen at its beginning or end,
set the boundary to just after that hyphen. Next, check whether one of the words in the
LN word pair exactly matches an initial or final string of the compound; if so, set the
boundary accordingly. Finally, if enabled by the program’s configuration, recompute
bnd1 and bnd2 after removing the final letter of the first word and/or the first letter
of the second word. If the two boundaries are the same, declare that the split point.
If they leave a gap, set the split point to be at the beginning or end of the gap if the
language inflects on the appropriate end of the word and the letter just outside the gap
is cognate.

The extension of the method to handle non-cognates is quite straightforward. For
each LN word, we apply similarity scoring not just to the word itself, but also to
each translation into LC given by a bilingual lexicon. The translations are ordered by
decreasing similarity score with the compound, and the original, untranslated word is



tried after all translations have been found to be unsuccessful. We may allow both
words to be translated, or limit the application of the lexicon to at most one word of
each pair examined.

3 Examples

Some examples from the German-English corpus will now be used to illustrate the var-
ious cases described above. For each example, subscripted digits indicate the locations
of bnd1 and bnd2.

Example 1: exact match

English ”abdominal angiography”
German ”Abdominal12angiographie”
split ”Abdominal angiographie”

Example 2: gap, but contains hyphen

English ”2nd-line therapy”
German ”2nd-line1-2Therapie”
split ”2nd-line- Therapie”

Example 3: gap, resolved by assuming that inflectional morphology caused the gap

English ”Amniotic membrane”
German ”Amnio1n2membran”
split ”Amnion membran”

Example 4: overlap, but one word matches exactly

English ”heart transplantation”
German ”Herz2t1ransplantation”
split ”Herz transplantation”

Example 5: overlap, resolved by dropping letters

English ”hormone therapy”
German ”Hormon2the1rapie”

(recompute after dropping last letter of first word:)
English ”hormon therapy”
German ”Hormon12therapie”
split ”Hormon therapie”

4 Experiments

The data for the experiments reported here consisted of 531,690 paired (English and
German) journal article titles retrieved from the PubMed service (http://www.ncbi.-
nlm.nih.gov/PubMed/). 8035 title pairs from articles appearing during the calendar
year 2000 were held out for testing EBMT performance, and the remaining 523,655 pairs



were used for training. For those runs involving a bilingual dictionary, the dictionary
was extracted from the training portion of the title collection.

The first of the three experimental conditions to be investigated (“baseline”) used
only the raw text. Thus, compounds were split solely on the basis of similarity between
pairs of English words and a German compound.

The second condition (“dictionary”) used the corpus-derived dictionary to allow
matches based on the similarity between the German translations of English words and
German compounds as well as direct English-German similarity. Two variants of this
approach were used – in the first (“dict-single”), only a single word was allowed to be
translated, while in the second (“dict-full”), either or both words could be translated
prior to measuring similarity.

The third experimental condition (“feedback”) first ran the “dictionary” condition
to generate an initial decomposition of the text. This decomposed version of the training
text was then used to train a new dictionary, which in turn was used to generate the
final decomposition. As for “dictionary”, the runs could be restricted to translating
at most one word of the pair or allowed to translate both words prior to measuring
similarity.

For all experiments, the parameters were set as follows:

• minimum length = 6 characters

• similarity threshold = 0.6

• maximum prefix = 0

• maximum suffix = 2

• forbidden boundaries = “chr e”, “sc h”

• deprecated boundaries = “sch”, “handlung”, “sicht”, “haltung”, “risch”

• known prefixes = “ge”, “be”, “zu”, “k”, “ver”

• known suffixes = “gs”

EBMT performance was measured using a test set consisting of 2000 sentence pairs
from the held-out year-2000 PubMed data. The system was trained on various decom-
pounded corpora and a bilingual lexicon derived from the same corpus. For translating
from German into English, the German halves of each sentence pair (19704 tokens prior
to decompounding) were used as input; for translating from English into German, the
English halves (23386 tokens) were used.

5 Results

Figures 2 and 3 show the performance of the different variations of the decompounder
described in Section 4. For each variation, the number of distinct compounds (“types”)
which were split are shown, along with the total number of instances of those words in
the corpus (“tokens”). The error rate was estimated by manually evaluating a uniform
sample of 500 types, counting as an error all compounds for which any hypothesized
split is incorrect (either extraneous or in the wrong location). This is a strict scoring,
resulting in a 100% error rate if the program hypothesizes all possible splits; the error



Run Types Tokens Errors/500 Error Rate

Baseline 66,960 383,120 5 1.0%
Dict-Single 100,540 415,521 23 4.6%
Dict-Full 128,847 665,231 37 7.4%
Feedback-S-S 109,559 482,604 34 6.8%
Feedback-S-F 143,151 828,147 37 7.4%
Feedback-F-S 116,306 644,224 33 6.6%
Feedback-F-F 150,726 943,290 59 11.8%

Figure 2: Performance of the Decompounder

Run Types Tokens Errors/500 Error Rate

Baseline 42,142 188,033 4 0.8%
Dict-Single 58,775 209,735 16 3.2%
Dict-Full 73,531 341,801 34 6.8%
Feedback-S-S 63,274 253,623 24 4.8%
Feedback-S-F 81,203 457,119 45 9.0%
Feedback-F-S 66,369 320,471 34 6.8%
Feedback-F-F 84,961 529,782 58 11.6%

Figure 3: Performance of the Decompounder (with corpus-restricted splitting)

rate as a percentage of hypothesized splits is lower than the error rate shown. The
only difference in parameters between corresponding entries in the two figures is that
Figure 3 used initial/final-bigram statistics to restrict possible decompositions.

Figures 4 and 5 show how the performance of the baseline system varies with differ-
ing thresholds on the similarity score. Again, the two figures differ in whether bigram
statistics were used to restrict decompositions. The recall rates were estimated by
counting the number of terms in a 1000-element sample of compounds for which splits
were proposed; this provides an upper bound, since the program will be credited for
a term even if it finds only one of multiple split points. The sampling of compounds
was created by taking 2000 uniformly distributed terms from the alphabetically sorted
German vocabulary, and manually extracting the first 1000 compounds (approximately
70% of all types are compounds, and even those which can translate as a single word
in English were retained). Figure 6 shows the recall-error tradeoff graphically.

Full analysis of the decomposition results is still pending, but some preliminary ob-
servations will be proffered. Although the corpus-restricted decomposition does indeed
reduce the error rate at any given threshold, the yield is reduced to the point where the
same yield can be achieved with a lower error rate by using unrestricted splitting with
a higher threshold. A large proportion of the errors in the “feedback” variants are due
to the splitting-off of inflectional morphemes such as “s”, “ische”, and “ischer”, which
may be due to matching the base form of a word as one half of the supposed compound
and an unrelated English word against the inflectional morpheme as the other half.

The final experiment was to use the decompounded corpus and a bilingual lexicon



Threshold Types Tokens Error Rate Est.Recall

1.0 1,678 12,413 0.6%∗ 0.5%
0.9 13,361 51,710 0.4% 4.3%
0.8 36,677 151,757 0.4% 11.3%
0.7 51,902 242,913 0.8% 16.9%
0.6 66,960 383,120 1.0% 22.2%
0.5 84,027 815,942 4.2% 27.5%
0.4 104,801 1,135,402 17.4% 34.4%
∗All three errors in the sample of 500 were due to erroneous

embedded spaces in the word in the English version of the title.

Figure 4: Effects of Varying Thresholds

Threshold Types Tokens Error Rate Est.Recall

1.0 672 5,440 0.2%∗ 0.1%
0.9 8,724 29,321 0.2% 3.1%
0.8 23,151 76,475 0.6% 6.8%
0.7 32,780 139,427 0.4% 10.4%
0.6 42,142 188,033 0.8% 13.8%
0.5 52,458 428,756 1.6% 17.3%
0.4 63,580 715,895 9.4% 21.5%
∗The lone error in the sample of 500 was due to an erroneous

embedded space in the word in the English version of the title.

Figure 5: Effects of Varying Thresholds (with corpus-restricted splitting)

statistically extracted from that corpus to train an example-based machine translation
system. Figure 7 shows what percentage of words from the 2000-sentence test input
produces phrasal (two words or longer) matches against the corpus, what percentage
of the input generates translations after successful subsentential alignment, and the
average length of a successfully-aligned match. For German input, the percentage
of matches against the corpus varies because the input text (both training and test)
changes due to decompounding. As a result of the increased number of tokens after
decompounding, the coverage values are not directly comparable, so that the actual
performance improvement is smaller than it would appear from Figure 7.

6 Conclusions

Corpus-directed decomposition of compound words can yield a substantial fraction
of all possible decompositions with a low error rate, which is useful for a variety of
applications. While the additions to the basic method increase the number of words
that are decomposed, the error rate quickly becomes excessively high.

Use of a decompounded corpus with an example-based machine translation system
provides a small but definite improvement in performance. The percentage of input
words for which corpus matches exist but no good alignment from English to German



0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40

E
rr

or
 R

at
e 

(%
)

Estimated Recall (%)

no corpus restrictions
corpus-based restrictions

Figure 6: Recall vs. Error Rate

Corpus Coverage Avg Length
Matches (words) (words)

Baseline Eng->Ger 90.34% 83.18% 2.985
Decompounded (base) 90.34% 84.05% 2.985
Decompounded (dict-S) 90.34% 84.91% 2.989
Decompounded (feed-S-S) 90.34% 84.93% 2.983

Baseline Ger->Eng 78.17% 71.31% 2.876
Decompounded (base) 80.81%∗ 74.40% 2.992
Decompounded (dict-S) 81.21%∗ 75.14% 2.943
Decompounded (feed-S-S) 81.74%∗ 75.61% 2.963

∗ see text

Figure 7: EBMT Performance

can be found is reduced by as much as 24.4%.

The decompounding process generates, as a by-product, a mapping from the com-
pounds to phrases in the other language. This could be used as a bilingual phrasal
lexicon, but in the current implementation the phrase will be an incomplete translation
whenever a split point is missed.



7 Future Work

Many enhancements to the work described here are possible.

The set of letters considered cognate to each letter in the one language is currently
specified in a data file; these could be induced automatically from the training corpus.
An advantage of automatic induction is that the weight of each possible cognate letter
can be set according to the relative frequency of occurrence. Separate weights are
supported by the existing code, but have not been used to date.

Similarly, positions where it is not acceptable to split a word are specified manually
or using letter bigrams from the corpus; the corpus proved to be too small for the
latter to be effective. A better approach may be to prefer split points which gener-
ate words that are present in the corpus (including words generated by unambiguous
decompositions). This would be an extension of the heuristic of Example 4 in Section 3.

The current system supports one specific case of two-to-one mappings – doubled
letters. A more general many-one or even many-many mapping would be able to deal
with cases such as a German “dsch” corresponding to an English “j” or English “sh”
corresponding to German “sch”.

Many of the generated errors are due to cognate-matching against words which are
not actually translations. To reduce this source of error, the lexicon should be used
(when available) to restrict possible LN words to check against suspected compound
words.

It should also be possible to improve performance by using two passes. In the
first pass, use a moderately strict threshold to find constituents with a high degree of
confidence. On the second pass, use the constituents found during the first pass to
guide the decompounding when using a lower threshold for greater recall.

References

Adda, Gilles, Martine Adda-Decker, Jean-Luc Gauvain & Lori Lamel: 1997, ‘Text Normaliza-
tion and Speech Recognition in French’, in Proceedings of Eurospeech ’97 , Rhodes, Greece,
pp. 2711–2714.

Adda-Decker, Martine, Gilles Adda & Lori Lamel: 2000, ‘Investigating Text Normalization and
Pronunciation Variants for German Broadcast Transcription’, in Proceedings of ICSLP-
2000 , ftp://tlp.limsi.fr/public/icslp00 h4ger.ps.Z.

Braschler, Martin & Peter Schäuble: 2000, ‘Experiments with the Eurospider Retrieval System
for CLEF 2000’, http://www.iei.pi.cnr.it/DELOS/CLEF/braschler.pdf.

Brown, Peter, J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, J. Lafferty, R. Mercer
& P. Roossin: 1990, ‘A Statistical Approach to Machine Translation’, Computational
Linguistics , 16: 79–85.

Brown, Ralf D.: 1997, ‘Automated Dictionary Extraction for “Knowledge-Free” Example-Based
Translation’, in Proceedings of the Seventh International Conference on Theoretical and
Methodological Issues in Machine Translation (TMI-97), Santa Fe, New Mexico, pp. 111–
118, http://www.cs.cmu.edu/~ralf/papers.html.

Brown, Ralf D.: 1999, ‘Adding Linguistic Knowledge to a Lexical Example-Based Transla-
tion System’, in Proceedings of the Eighth International Conference on Theoretical and



Methodological Issues in Machine Translation (TMI-99), Chester, England, pp. 22–32,
http://www.cs.cmu.edu/~ralf/papers.html.

Melamed, I. Dan: 1997, ‘A Word-to-Word Model of Translational Equivalence’, in 35th Annual
Meeting of the Association for Computational Linguistics (ACL’97), pp. 490–497.

Tiedemann, Jörg: 1999, ‘Automatic Construction of Weighted String Similarity Measures’, in
Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora.


