
Stone Soup Translation∗

Paul C. Davis and Chris Brew
Department of Linguistics

Ohio State University
222 Oxley Hall
1712 Neil Ave.

Columbus, OH 43210-1298
USA

{pcdavis, cbrew}@ling.ohio-state.edu

Abstract

The automated translation of one natural language to another, known as ma-
chine translation, typically requires successful modeling of the grammars of the two
languages and of the relationship between them. Rather than hand-coding these
grammars and relationships, some machine translation efforts have begun to em-
ploy statistical methods, where the goal is to learn from a large amount of training
examples of accurate translations. This work has also been extended to probabilis-
tic finite-state approaches, most often via transducers. In this project, a novel com-
bination of finite-state devices is employed. The model proposed, which consists
of two probabilistically linked automata, is more flexible than a transducer model,
giving increased ability to handle word order differences. In addition to the model
and algorithms for its construction and use, we present several increased-coverage
techniques, including methods for extracting partial results from the model. We
present preliminary results for a test corpus of English to Spanish translations,
which suggest the model may serve as a base for rudimentary translation, when
used in conjunction with these extensions.

1 Introduction

Creating a translation system for natural languages often involves not only successfully
modeling the grammars of the languages, but also modeling the relationship between
the two languages. These models may be hand-crafted, but in recent years many data-
driven approaches, i.e., those that learn from translation examples, have been explored.
Data-driven approaches are appealing because of their lack of reliance on sophisticated
human linguistic input, as well as for their robustness, since the graceful degradation
of many of these systems makes them more tolerant of noisy input.

Within this area of data-driven machine translation, are machine translation (MT)
approaches which are purely statistical. Probably the best known example of statistical

∗Thanks to Philip Resnik, for making multilingual Bibles available for research via the University
of Maryland Parallel Corpus Project, to Dan Melamed and Franz Josef Och for discussions regarding
word alignment resources, and to Hiyan Alshawi regarding evaluation metrics. This work benefited from
the comments of Bob Kasper, Erhard Hinrichs, Detmar Meurers, Dale Russell, and three anonymous
reviewers. Paul C. Davis is the recipient of a Motorola University Partnerships in Research Grant.
Portions of this research were also funded by an Ohio State University Summer GRA in Cognitive
Science.

machine translation (SMT) is Brown et al. (1993), which models the alignment between
words in two languages. There are, however, a number of SMT approaches which seek
to impose additional structure on the language and translation models via the use
of finite-state devices. These range from techniques which attempt to replicate the
pure SMT approach by means of composed transducers, such as Knight & Al-Onaizan
(1998), to those which use subsequential transducers on limited domain translation
tasks, such as Vilar et al. (1999) , and finally to those which employ more powerful
finite-state devices, such as weighted head transducers (Alshawi et al. 2000), to model
the hierarchical syntactic structure of sentences via dependency trees. What most
of the finite-state MT approaches share is the use of transducers as the underlying
mechanism for translation. The use of transducers and finite-state devices in general is
motivated by the fact that they are well understood, and can be used quite efficiently,
notwithstanding their known limitations in terms of expressivity.

the linked automata model Transducers, however, have the unfortunate quality
of creating an ordering asynchrony between the two languages. For example, we might
represent the relationship between word-aligned English and French sentences shown
in figure 1 with the transducer show in figure 2.

the black cat likes fish

le chat noir aime le poisson

Figure 1: An example English and French word alignment

the:le cat:noirblack:chat likes:aime fish:le ε:poisson
60 1 2 3 4 5

Figure 2: A transducer as a very simple translation system

This asynchrony means that one language imposes its linear ordering constraints
on another and that the natural notion of a correspondence between words or word
sequences in a translation is obscured. There exist methods for dealing with such
asynchronies, such as using special symbols to indicate the original order (Vilar et al.
1999), but in this paper we present a more direct translation model: We represent
the alignments between the words of bitexts (pairs of corresponding source and target
sentences) literally, while still representing the relative ordering of the source and target
language sentences (see figure 3).

Rather than using transducers, we move to linked automata, pairs of automata
where the transitions are linked to one another by a weighted partial function. The
alignment given in figure 1 can be incorporated directly into the linked automata model
as shown in figure 3, where dotted arrows represent the alignments. The two automata
constitute separate but linked language models for the two languages, and the linking
function (or translation model) captures the crucial relationships between words on
each side of the translation relation.

This linked automata model is extremely simple, and has limited descriptive power,
since, for example, automata can only represent regular languages and not context-free

61 3 4 50
poissonle chat noir aime le

2

1 2 3 40

black cat likesthe fish
5

Figure 3: A bitext as represented in the linked automata MT model

languages, while natural languages are standardly assumed to be at least context-
free. But by using techniques for approximation and generalization, and heuristics for
working with partial results, the model may indeed prove to be adequate for translation
tasks.1 The model thus also bears a relationship to another type of data-driven MT,
example-based machine translation, since when working with partial results, decisions
need to be made with regard to where segments should be matched and how their
translations should be recombined (see, for example, Nirenburg et al. (1993)).

In the remainder of this paper, we will, in section 2, briefly describe the training
process for the model, including our use of probabilities and their motivation. In section
3 we describe the translation process, detailing how the linked automata model is used.
In section 4 we outline methods we use for increased generalization as well as size-
reduction of the system. In the final section, we describe our evaluation methodology,
and present preliminary results and future research directions.

2 Training

A linked automata translation system consists of a source language automaton, a target
language automaton, and an alignment table. The automata are standard, consisting
of a finite set of states, Q, a start-state q0 (numbered 0 in figures), a set of final states,
F ⊆ Q (shown in double circles), and a set of transitions, T . Each of the states are
uniquely numbered so that we have a means to identify them. Transitions between
states take the following form < qb, qe, w, p >, where qb is the begin state, qe is the end
state, w is the label (w is for word), which may be empty (i.e., an epsilon-transition),
and p is a probability associated with the transition. A string is recognized in the usual
manner (i.e., we can recognize a string of words if there exists a path labeled with
those words in the same order from the start-state to a final state). We also require
that the automata be acyclic, otherwise we would not know how to order the words in
a translation (see section 3).

The alignment table is a (partial) function from the power set of source transitions
to a set of sets of pairs of target transitions and probabilities. For example, in figure
3, the source transition < 2, 3, cat >2 would be aligned in the table with the target
transition < 1, 2, chat >. Suppose that this alignment comprised 17 percent of the
overall alignments, and further that < 2, 3, cat > was never aligned with anything else
during the training process. Then we would expect to see the following table entry for

1It is for this reason that we make reference to Stone Soup, after the story of a man who claimed
he could make delicious soup with only a stone, and then proceeded to add other ingredients until he
was able to amaze people with the soup’s good taste.

2We show transition probabilities only when necessary.

this alignment: (< 2, 3, cat >) → {((< 1, 2, chat >) .17)}. If we ignore the probabilities
in the alignments, the translation model simply nondeterministically provides a set of
translations for any input string which can be recognized.3

probabilities There are three major considerations regarding probabilities in the
model: (1) the probabilities of the language models (the two automata); (2) the prob-
abilities in the table (the alignment probabilities); and (3) the interaction between the
two. Probabilities in the automata are implemented following Vilar et al. (1999). First,
for any given state, we need to know the probability that it is final. The second prob-
ability, the transition probability, is defined so that for every state q, the sum of the
probabilities of the transitions departing from q and the probability that q is final is
equal to one. Thus, the probability of a string being accepted by the path of transitions:
< q0, q1, w1, p0,1 >, < q1, q2, w2, p1,2 >, . . . , < qn−1, qn, wn, pn−1,n > is defined as:

(1) Pis final(qn)
∏n

i=1 pi−1,i

Thus the language model assigns a nonzero probability only to strings which are ac-
cepted. We are able to estimate both the state and transition probabilities by using
the frequency of each transition during training.

Probabilities in the table, which we call alignment probabilities, are based on the
alignments of words in bitexts from the training corpus. In order to find the correct
alignment of a bitext, we first look for the best alignments of its component sequences.
Our goal in the table is to represent this connection probabilistically, since sequences
can be aligned in more than way. To do this, we count. That is, during the au-
tomata and table construction process, every time a sequence in the source automaton
is aligned with a sequence in the target, we increment the table entry for this align-
ment. For example, an alignment between a source transition sequence, STSi, and a
target transition sequence, TTSk, would result in changing the pair (where c is a count)
< TTSk, c > to < TTSk, c + 1 >.4

As will be described in section 3, translation consists in part of the transitions of
the source automaton “activating” the transitions of the target automaton, via the
links in the table. If all of the alignments in the table were equally likely, we could
rely on the target automaton’s transition probabilities alone to choose among competing
sequences of transitions when looking for the most probable translation. Since, however,
alignment probabilities vary, we rely on them to tell us how much to weight each target
transition probability, i.e., for any given activated target transition, we multiply its
probability by the probability of the alignment which generated it.5 In this manner,
each transition sequence in the target may be evaluated both in terms of its likelihood
in the target language model and as having been generated via the alignment model.
For example, a target transition sequence < q0, q1, w1, p0,1 >, < q1, q2, w2, p1,2 >, . . . ,

3In the alignment table presentation, we describe the translation process from source language to
target language. The alignments are in fact, bidirectional, in the sense that the table is easily inverted,
allowing for translation in either direction.

4The presentation here is slightly simplified. We normalize the probabilities by the total number of
alignments for the whole table.

5Multiplication is not the only option here, but has the merit of simplicity.

< qn−1, qn, wn, pn−1,n > with alignment probabilities a1, a2, . . . , an will have the overall
translation probability:

(2) Pis final(qn)
∏n

i=1 aipi−1,i

construction The linked automata model is constructed from word-aligned bitexts.
For the results reported in this paper, we used English and Spanish versions of the
Judeo-Christian Bible.6 We experimented with two different automatic word-aligners:
a rather poor-performing word-aligner we created for the task, and the higher quality
(word alignments of the) Giza++ translation model (Och & Ney 2000).7 Construction
from the word-aligned bitexts is straightforward: From a file of bitext triples (a source
sentence, a target sentence, and a representation of the alignment between them), for
each triple, add the appropriate states and transitions to the source automaton so that
the source sentence can be recognized, perform the analogous additions to the target
automaton with respect to the target sentence, and for each alignment pair of the form:
((source trani...source tranj) (target trank...target tranl)), add an entry to the table
for the source sequence if one does not already exist. Then, within this entry for the
source transition sequence, increment the count for the target transition sequence by
one, after first creating it if necessary. The top-level system construction algorithm is
shown in figure 4. One version of the construction process additionally permits merging
(see section 4) for generalization.

For each bitext triple < source string, target string, aligned pairs >

{ source wordnum-to-transition hash = add to fsa(source fsa, source string)

target wordnum-to-transition hash = add to fsa(target fsa, target string)

for each aligned pair < source wordnums, target wordnums >

{ add to alignment table(

(get trans seq(source wordnums, source wordnum-to-transition hash))

(get trans seq(target wordnums, target wordnum-to-transition hash)))}}

Figure 4: Linked automata model construction algorithm from aligned bitexts

3 The Translation Process

Translation consists of three stages: (I) processing the source sentence; (II) retrieving
the target transition sequences to be activated from the table; and (III) using these
target transitions to find all allowable paths through the target automaton (i.e., all the
translations). Continuing with the the black cat likes fish translation example (shown
earlier as a portion of a linked automata translation model in figure 3), we illustrate
the translation algorithm in figure 5.

We begin with a string of source words, S, and attempt to recognize S in the
source automaton. If successful, we collect the transitions of the most probable source
transition sequence (STS). In the second stage, we take the STS and use it to select

6We chose to use the Bible because of its electronic availability and the ease of sentence alignment.
7Better quality word alignment usually leads to better translations, as shown with the results in

table 1. We measured the quality of word-alignments independently against a hand-aligned corpus.

some

0

the

a brown dog loves bones

black cat likes fish

1 2 3 4 5

6 7 8 109

11

small rabbits carrotslove

1512 13 14

Records Which Source Transition(s) Generated it

6. The Collected Target Transition Sequences
Define An Automaton. Each Target Transition

1 3 40 2

le,{S1} chat,{S3} noir,{S2} aime,{S4} le poisson,{S5}

6

7. Generate Each Complete Transition Sequence
Which Uses Each Member of STS Exactly Once

"the black cat likes fish"
T(x)

for each member x of substring closure,

to it, and collect the results1. Source Language Input

2. Parse Using Source Automaton

. . .

<0,1,le,{S1}>
<2,3,noir,{S2}>
<1,2,chat,{S3}>
<3,4,aime,{S4}>
<4,6,le poisson,{S5}>

5. Get Target Language Alignments via Table

 S2, S2 S3,..., S2 S3 S4 S5,..., S5 }
{S1, S1 S2,..., S1 S2 S3 S4 S5,

4. Compute Substring Closure for STS

<0,1,the> <1,2,black> <2,3,cat> <3,4,likes> <4,5,fish>

 S1 S2 S3 S4 S5
"le chat noir aime le poisson"

Transition Sequence are the Translation
8. The Labels of the Highest Probability

3. Use Most Probable Source Transition Sequence (STS)

Stage IIIStage I Stage II

apply the alignment table function T

Figure 5: The linked automata translation algorithm

target transitions from the transition alignment table. This is not, however, simply a
matter of getting the value for each source transition from the table, since alignments
are between sequences of transitions. In principle, any alignment type is allowed, e.g.,
2 transitions to 1, 5 to 6, etc. So, we first compute the substring closure for the STS,
which is simply the set of all substrings of a sequence, including the empty string. Then,
for each member of the substring closure, we get the value from the table. If we think of
the table as a function, T, we simply apply T to each member of the substring closure,
and collect the results.8 These collected results contain all the target transitions which
will be activated, and lead us to the final translation stage.

At this point we have a set of activated target automaton transitions. Our strategy
is to put these transitions together in all ways that the target language model allows,
then to choose the best one. In our earliest implementation, we used a modified chart
parser to put the activated transitions together. But this step lacked a crucial insight:
The activated transitions, taken as a unit, are already connected. In fact, they define an
automaton, one which is simply a much smaller part of the original target automaton.
Imagine an automaton with thousands of transitions, where a small number of the
transitions are chosen randomly. These transitions, along with the original start-state
and final state information, form an automaton.

Thus, putting these activated transitions together is just a matter of generating ev-
ery possible transition sequence from this smaller automaton, which is easily computed
given the automaton’s small size. In addition, we want to ensure that each source

8The values of the function in figure 5 (step 6) match those produced by following the dotted align-
ment arrows shown in figure 3. Note that using the substring closure precludes the use of discontinuous
alignments with source words, i.e., those where the source words of the alignment do not all occur in
sequence. This is intentional, since the word-alignment algorithms tested do not allow such alignments.
Nothing in the model’s architecture, however, needs to be changed to use them, and we will present an
algorithm for translating with such alignments in a future paper.

word is used exactly once to generate each complete target transition sequence. We
accomplish this by adding another component to transitions, called the source-word-
store (sws), inspired by Johnston (1998), which contains a numerical representation
of the source words which generated the transition. A complete parse, then, (i.e., a
potential translation), is a sequence of transitions which begins at the start-state, ends
at a final state, and has a full sws (i.e., one that covers all the source words). The best
translation is the combined labels (i.e., the words) of the highest scoring sequence.

4 Generalization

The model as described is limited to only the exact bitexts on which it was trained. We
use a number of techniques to increase its ability to generalize (as well as reduce its size,
a nontrivial problem for this type of translation model), the most important of which is
merging. We merge transitions in the automata (transition merging can alternatively
be viewed as merging two pairs of states) only if the result would not cause us to “lose”
any translations the model already covers. We refer to this requirement as preserving
the translation integrity, and define it as:

(3) Let P, Q be the sets of strings over the sets of source and target words, respectively,
T ⊆ P ×Q be the set of training bitexts, and T ′ be the set of translations in the
merged translation system, then translation integrity is:
(∀p)(∀q) (< p, q >∈ T →< p, q >∈ T ′)

In order to satisfy this requirement (and others of our approach), we allow transitions
to be merged only if they have the same label, the same translations, and their merging
would not create a cycle. To complete a merge we make the appropriate adjustments
to the table as well as the automata.

Although we do not describe merging or its consequences in detail here, we provide
an example below in figure 6, which shows how coverage can be increased at the level of
the source automaton via the merging of transitions. In this example, the automaton
on the left recognizes the two sentences the cat likes fish and a dog likes bones. After
merging the two transitions labeled likes, to get the automaton on the right side of the
figure, the automaton can recognize the two original sentences, plus the cat likes bones
and a dog likes fish, even though these two new sentences were not in the training data.

likes fish

bonesdog likes

0

the

a

1 2 3 4

5 6 7 8

likes fish

0

the
1 2 3 4

5 bonesdoga

cat cat

6

Figure 6: Merging on the automaton level

We also use four additional generalization techniques, which we regard as common
sense heuristics: (1) fragment processing, (2) unknown word fall-through, (3) partial
source parsing, and (4) partial target parsing. Fragment processing expands our cov-
erage to process not only every training source sentence as a valid input, but also
any substring of it, and similarly for the target language model. Unknown word fall-
through means that rather than completely rejecting source sentences which contain

words which were unseen during training, we let the unknown words fall through un-
translated, and translate the words on either side of the unknown words, as if these
word sequences were translated on their own.

Next is partial source parsing. Suppose that all the individual words in a source
string have been seen before, but that we cannot recognize the string itself, i.e., we
cannot find any path in the source automaton for the given string, even if we allow
fragments. Once again, perhaps the most sensible thing to do is look for ‘parts’ of
this source string which we can recognize, and to translate these parts individually in
the linear order they occur. A straightforward greedy algorithm is to get the longest
substring which we can recognize, translate it, and then do the same with the remaining
parts. This approach, at its worst, devolves to a simple word-for-word translation,
where the source string imposes its word ordering on the translated target words.

Partial target parsing is used at the last stage of the translation process to order
unconnected transitions. This is necessary when no sequence is found which represents
a complete transition path in the target automaton. This situation can arise as the
result of merging and the other generalization techniques. The algorithm employed uses
two heuristics. First, given two activated transitions A and B, if A precedes B in the
automaton, then A precedes B in the resulting translation. We use the following second
heuristic only if the first heuristic does not hold in either direction: If the distance from
the start-state to A is less than the distance to B, then A precedes B in the translation.
Using these techniques, we can guarantee that the system always produces something;
a property that simplifies the task of evaluation.

5 Evaluation and Future Directions

There appear to be as many different evaluation methods for machine translation as
there are machine translation methods. This arises from the fact that there is little
agreement on how to define what a correct translation is, much less how to measure
it, be the measurement automatic or human (White 2000). MT evaluation (MTE)
has become a small research niche in its own right, but these efforts have yielded few
uncontroversial results. It comes down to one of the fundamental truths of MTE:
“There is no such thing as the correct translation” (King (1997:261), emphasis added).

In an evaluation of system such as that proposed in this paper, we are primarily
interested in determining if the overall approach is feasible, as well as being able to assess
to what degree the generalization methods improve performance. As such, automatic
evaluations are suitable (White 2000), especially since small changes in the model may
yield large changes in performance, and string-based evaluation metrics appear to be
appropriate. We use edit-distance, the minimum number of insertions, deletions, or
substitutions to convert one string to another (see Kruskal (1999)). In this case, the
edit-distance is measured in terms of words.

Edit-distance returns a natural number, but the meaning of these numbers depends
on the length of the sentences being tested. A measure that we can compare across test
examples and that returns a value between 0 and 1 is more suitable. Following Alshawi
et al. (2000), we use simple-accuracy (SA), and translation-accuracy (TA), as defined
below, where I, D, and S are the number of insertions, deletions, and substitutions,

respectively, I ′ and D′ are insertions and deletions if transpositions, T , are taken into
account, and R is the length of the reference translation.

(4) simple-accuracy = 1 − ((I + D + S)/R)

(5) translation-accuracy = 1 − ((I ′ + D′ + S + T)/R)

Alshawi et al. (2000) view translation accuracy as a more appropriate measure for
translation because transpositions of otherwise correct words count as one error (a
transposition), rather than two (a deletion plus an insertion).9

As mentioned in section 2, we trained the model with two different sets of word-
aligned bitexts (using 1,529 English and Spanish verses from the Bible): one set of
low quality (set A in table 1), and one of better quality (the Giza++ alignments, set
B in table 1). We report SA and TA results for both training sets, and, for brevity,
report translation times and system size for training set A only. The 1,529 bitexts
consisted of 38,364 English words, 2,443 of which were unique, and 34,779 Spanish
words, 3,861 which were unique. To give an idea of the system size, for training set
A, the source automaton consisted of 34,537 states in an unmerged system. Using
the most conservative merging algorithm during construction, this size was reduced by
31%.10 Clearly size considerations are an important issue for this type of translation
model, and less conservative merging techniques will need to be tested.

In table 1, we report our results for four different test suites (each consisting of
ten English and Spanish bitexts), and a variety of increased-coverage options, listed
so that tests using more of the options come later, for each test-suite. For a given
test configuration, merged system results always follow unmerged system results. Test-
suite 1 consisted of bitexts from the training sets and thus was not really a test, but
rather a reality check, just to make sure that our system could handle the bitexts on
which it was trained. Test-suite 2 consisted of bitexts from the Bible which were not
in the training data, but contained no unknown source words. Test-suite 3 bitexts
used unseen Bible sentences that contained unknown words (hence the most difficult
of the tests). In test-suite 4, we took some of the training sentences and replaced a
number of words in them with (known) words of the same lexical category, to create
sentences not in the training data, but which were quite close (hence the easiest of
the latter 3 tests). In general, the system performed as expected, showing significant
improvement as the increased-coverage heuristics were added, but poor performance
without them. Merging had the greatest effect for the most difficult tests, i.e., where
additional generalization would be expected to be the most helpful. In general, rough
translations of long (> 24 words), difficult sentences, could be accomplished within six

9Intuitively, SA can be thought of as measuring what percentage of words are correct and in the
proper position in the translation. Note, however, that these measures do not strictly yield a positive
number, since it is conceivable to have a translation which is wrong by more words than R. In such
instances we treat the distance as R, thus SA and TA are 0.

10The merging reported on here was limited to singleton source transition sequences and alignments
to singleton sets of target transition sequences, so significantly more merging is possible which is
guaranteed to preserve the translation integrity.

A-wa B-wa Time
TS SrcL Mrg PSP FRG PTP UFT SA/TA SA/TA (sec)

1 20.3 no no no no no 1.00/1.00 1.00/1.00 0.4
1 20.3 yes no no no no 0.99/0.99 0.99/0.99 1.4
2 19.5 no no no no no 0.00/0.00 0.00/0.00 0.0
2 19.5 yes no no no no 0.00/0.00 0.00/0.00 0.0
2 19.5 no yes yes no no 0.16/0.16 0.39/0.39 4.5
2 19.5 yes yes yes no no 0.13/0.13 0.38/0.39 4.1
2 19.5 no yes yes yes no 0.31/0.31 0.40/0.40 4.5
2 19.5 yes yes yes yes no 0.28/0.28 0.39/0.40 4.3
3 24.3 no no yes no yes 0.02/0.02 0.02/0.02 0.2
3 24.3 yes no yes no yes 0.02/0.02 0.02/0.02 0.4
3 24.3 no yes yes no yes 0.16/0.17 0.33/0.33 5.6
3 24.3 yes yes yes no yes 0.21/0.21 0.36/0.36 5.4
3 24.3 no yes yes yes yes 0.22/0.23 0.34/0.34 5.6
3 24.3 yes yes yes yes yes 0.31/0.31 0.38/0.38 5.6
4 17.6 no no no no no 0.00/0.00 0.00/0.00 0.0
4 17.6 yes no no no no 0.00/0.00 0.00/0.00 0.0
4 17.6 no yes yes no no 0.66/0.66 0.51/0.53 1.1
4 17.6 yes yes yes no no 0.62/0.62 0.51/0.51 1.1
4 17.6 no yes yes yes no 0.88/0.88 0.80/0.82 1.2
4 17.6 yes yes yes yes no 0.84/0.85 0.80/0.81 1.2

Table 1: Summary of test results key: TS=test-suite, SrcL=mean source sentence length,
Mrg=Merged, PSP=partial source parsing, FRG= fragment processing, PTP=partial target
parsing, UFT=unknown word fall-through, A-wa=low quality word-alignment, B-wa=better
quality word-alignment, SA/TA=simple-accuracy/translation-accuracy, Time=mean run time

seconds.11 The better quality training set, set B, led to better accuracies, as expected,
except for test-suite 4. We view these results as an indication that the system may be
a promising base for future development, but must note that overall accuracy remains
low, with scores at .40 or below for test-suites 2 and 3. We see several reasons for
the low accuracy, the most important of which is insufficient generalization. Only in
test-suite 3 does merging improve accuracy. Also, we suspect that the training sets
were too small, and that at this stage in development, the Bible may be too difficult a
translation task. Lastly, incorrect word-alignment and less than optimal partial parsing
algorithms are likely sources of many errors. More fundamentally, the model remains
subject to many of the limitations faced by other finite-state models which do not fully
take hierarchical structure into account, but we believe there remains ample room to
see how far such a model can be pushed as a translation system.

future research The most immediate goal is to achieve more generalization (via
merging) and thus better accuracy and smaller model size. Additional future plans to

11Testing was done on a 500MHz Sun Blade-100. The system performance was optimized to the point
were translation was fast enough for frequent testing, but further improvement should be possible. Off-
line tasks, such as training, were significantly longer, with training on 1529 bitexts ranging from 30
seconds (no merging) to 1 hour (with merging).

improve the coverage extend to a number of areas where we would make use of more
linguistic information. We next expect to explore the use of part-of-speech (POS) tags.
By using POS tags, we can both differentiate senses of words, and begin to make gener-
alizations about categories. We are also considering adding special handling of function
words, as well as presegmentation components, either morphological (lemmatization)
or syntactic (partial parsing), as well as improving our algorithms for extracting partial
results. Another idea is to allow the context of the translations to play a role. This
could be accomplished by allowing the activation of used target transitions to slowly
decay, rather than start anew with each translation task. With extensions such as
these, we have additional ingredients to make a better translation soup.

References
Alshawi, Hiyan, Srinivas Bangalore & Shona Douglas: 2000, ‘Learning dependency translation

models as collections of finite-state head transducers’, Computational Linguistics , 26(1):
45–60.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra & Robert L. Mercer: 1993,
‘The mathematics of statistical machine translation: Parameter estimation’, Computa-
tional Linguistics, 19(2): 263–311.

Johnston, Michael: 1998, ‘Unification-based multimodal parsing’, in Proceedings of the 36th An-
nual Meeting of the Association for Computational Linguistics and the 17th International
Conference on Computational Linguistics , Montreal, Quebec, Canada, pp. 624–630.

King, Margaret: 1997, ‘Evaluating translation’, in Christa Hauenschild & Susanne Heizmann,
eds., Machine Translation and Translation Theory , Berlin: Mouton de Gruyter, pp. 251–
263.

Knight, Kevin & Yaser Al-Onaizan: 1998, ‘Translation with finite-state devices’, in David
Farwell, Laurie Gerber & Eduard Hovy, eds., Machine Translation and the Information
Soup: Proceedings of the Third Conference of the Association of Machine Translation in
the Americas, AMTA ’98 , Berlin: Springer-Verlag.

Kruskal, Joseph: 1999, ‘An overview of sequence comparison’, in David Sankoff & Joseph
Kruskal, eds., Time Warps, String Edits, and Macromolecules: The Theory and Practice of
Sequence Comparison, Stanford: CSLI Publications, Reissued edition with an introduction
by John Nerbonne, pp. 1–44.

Nirenburg, Sergei, Constantine Domashnev & Dean J. Grannes: 1993, ‘Two approaches to
matching in example-based machine translation’, in Fifth International Conference on
Theoretical and Methodological Issues in Machine Translation, TMI ’93: MT in the next
generation, Kyoto, Japan, pp. 47–57.

Och, F. J. & H. Ney: 2000, ‘Improved statistical alignment models’, in Proceedings of the 38th
Annual Meeting of the ACL, Hong Kong, China, pp. 440–447.

Vilar, Juan Miguel, Victor Manuel Jiménez, Juan Carlos Amengual, Antonio Castellanos, David
Llorens & Enrique Vidal: 1999, ‘Text and speech translation by means of subsequential
transducers’, in Andras Kornai, ed., Extended Finite State Models of Language, Cam-
bridge: Cambridge University Press, pp. 121–139.

White, John S.: 2000, ‘Contemplating automatic MT evaluation’, in John S. White, ed., Envi-
sioning Machine Translation in the Information Future: 4th Conference of the Association
for Machine Translation in the Americas, AMTA 2000 , Berlin: Springer, Lecture Notes
in Artificial Intelligence #1934, pp. 100–108.

