
[Proceedings of the National Symposium on Machine Translation, UCLA February 1960]

Session 8: INFORMATION PROCESSING AND LINGUISTIC ANALYSIS

A NEW THEORY OF TRANSLATION AND ITS APPLICATIONS1

Anthony G. Oettinger

Harvard University

The technique of predictive analysis and translation assumes a

particularly simple limiting form [l] with respect to certain artificial

languages, of which the following are examples:

(1) L: The Łukasiewicz parenthesis-free notation [2]. In the

following, xi denotes a variable, δjk, the kth member of a set

of functors of degree j, and Δji ; an arbitrary well-formed formula

in Lj .

(2) L1 : A language in which the well-formed formulas are:

(a) xi , and

(b) if Δ11 and Δ12 , then (δ1j Δ11 , and also (Δ11 δ2j Δ12 .

(3) L2 : A language in which the well-formed formulas are:

(a) xi , and

(b) if Δ21 and Δ22 , then δ1j Δ21), and also Δ21 δ2k Δ22).

(4) L3: A language in which the well-formed formulas are:

(a) xi , and

(b) if Δ31 and Δ32 , then (δ1j Δ31), and also (Δ31 δ2k Δ32) .

L1, L2, and L3 will be referred to respectively as left-parenthetic,

right-parenthetic, and simple full-parenthetic languages.

Let p be a pushdown store. Let the input formula be scanned

character-by-character from left to right, and let the output formula

be produced by adjoining each new character to the left of those

previously generated. Let every functor δjk of Li have an

image δ'jk in L as, for example, ~ < →N, + < →A, • ↔ M .

With these conventions, rules for translating from L2 to L may

be given as follows:

If the current input character is

(1) a functor, put its image at the top of p ;

(2) a variable, transfer it to the output;

1 This work has been supported in part by the National Science
Foundation and by the Rome Air Development Center, Air Research
and Development Command.

363

Session 8: INFORMATION PROCESSING AND LINGUISTIC ANALYSIS

(3) a right parenthesis, transfer the character currently at the

top of p to the output, then remove it from p .

The rules for translating from L1 to L are only slightly more

complex:

If the current input character is

(1) a left parenthesis, put a "v" at the top of p ;

(2) a functor, replace the "v" at the top of p by the image

of the functor;

(3) a variable

 (a) transfer it to the output;

(b) check p : if it is empty or has a "v" on top, proceed

 to the next input character; otherwise transfer the

 character currently at the top of p to the output,

 then remove it from p , and repeat step (b).

These algorithms, as well as their inverses, and algorithms

for translating in either direction between any pair of members of

{L, L1, L2, L3, … } can easily be described in a new notation

recently devised by Iverson [3] which lends itself well to the formu-

lation of proofs of certain interesting and significant properties of

the algorithms.

For example, algorithms for translating from L to L3 and

vice-versa have been devised for which it can be proved that they

will produce an image formula if and only if the input formula is well-

formed in the domain of translation. The image in each case is

unique, and well-formed in the range.

Let Δ = ΔH ΔM ΔT be any formula of the domain, split into

a head ΔH , a middle ΔM , and a tail ΔT . ΔM is well-formed

in the domain, while ΔH and ΔT are arbitrary residues de-

termined by the choice of ΔM . At a certain point in the execution

of an algorithm, the remaining input formula will be ΔM ΔT ,

some image Δ′H of ΔH will have been previously generated, and

p will be p(ΔH) , namely a function of ΔH only. While the

characters of ΔM are being scanned, p naturally becomes a

function of ΔM as well as of ΔH , but all contributions to p

due to ΔM will be "above" those due to ΔH in the pushdown

store.

Every algorithm of the type under consideration operating on

364

Session 8: INFORMATION PROCESSING AND LINGUISTIC ANALYSIS

formulas of the kind described in the preceding paragraph obeys the

conditions of a ΔM-theorem which guarantees, for any well-formed,

ΔM that once the remaining input formula is ΔT , then

(1) p is again p(ΔH), that is, no contributions due to ΔM

remain, at the top of the pushdown store,

 (2) the well-formed image Δ′M of ΔM will have been ad-

joined to Δ′H .

By way of illustrating the implications of this theorem we note

that an algorithm obeying it treats any nested well-formed subformula

independently of the rest of the formula. As a consequence, such

algorithms, if fail-safe, are fail-safe in a particularly satisfactory

way: as one example, taken from natural languages, prepositional

phrases or subordinate clauses can emerge unscathed, even though

the sentence in which they are embedded may not be analyzable as a

whole; as another example, from automatic programming, all the

well-formed subroutines of a program could be found at a single pass

through a compiler, even though the program as a whole might not be

well-formed. Debugging could therefore be made considerably easier

than it is in contemporary practice. Metaphorically speaking, any

branch of a tree can be analyzed even though it has been broken off

its parent branch.

A more complete and detailed description of these results, in-

cluding proofs of the relevant theorems, is being prepared for

publication.

365

Session 8: INFORMATION PROCESSING AND LINGUISTIC ANALYSIS

REFERENCES

[1] Oettinger, A. G. , "Current Research on Automatic Transla-
tion at Harvard University", paper presented at the National
Symposium on Machine Translation, Los Angeles (1960).

[2] Burks, A. W. , Warren, D. W. , and Wright, J.B., "An

Analysis of a Logical Machine Using Parenthesis-free Nota-
tion", MTAC, Vol. VIII, No. 46, pp. 53-57 (1954).

[3] Iverson, K. E. , "The Description of Finite Sequential Pro-
cesses", Theory of Switching, Report No. BL-23, Section III,
Harvard Computation Laboratory, Cambridge, Massachusetts.

366

