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The technique of predictive analysis and translation assumes a 

particularly simple limiting form [l]   with respect to certain artificial 

languages,  of which the following are examples: 

(1) L: The Łukasiewicz    parenthesis-free notation [2].     In the 

following,   xi   denotes a variable,    δjk,  the   kth   member of a set 

of functors of degree   j,  and  Δji  ;  an arbitrary well-formed formula 

in     Lj   . 

(2) L1 : A language in which the well-formed formulas are: 

(a) xi ,  and 

(b) if   Δ11  and   Δ12 ,  then  (δ1j  Δ11 , and also  (Δ11  δ2j  Δ12 . 

(3) L2 : A language in which the well-formed formulas are: 

(a) xi , and 

(b) if   Δ21  and Δ22 , then δ1j  Δ21),  and also  Δ21 δ2k Δ22). 

(4) L3: A language in which the well-formed formulas are: 

(a) xi ,  and 

(b) if   Δ31   and  Δ32 ,  then (δ1j  Δ31),  and also (Δ31 δ2k Δ32) . 

L1,   L2,    and  L3   will be referred to respectively as left-parenthetic, 

right-parenthetic,  and simple full-parenthetic languages. 

Let  p   be a pushdown store.    Let the input formula be scanned 

character-by-character from left to right,   and let the output formula 

be produced by adjoining each new character to the left of those 

previously generated.    Let every functor   δjk   of  Li    have an 

image    δ'jk     in  L  as,  for example, ~ < →N, + < →A,  •  ↔ M . 

With these conventions,   rules for translating from   L2   to  L  may 

be given as follows: 

If the current input character is 

(1) a functor,  put its image at the top of  p ; 

(2) a variable,  transfer it to the output; 

1  This work has been supported in part by the National Science 
Foundation and by the Rome Air Development Center,  Air Research 
and Development Command. 
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(3)  a right parenthesis, transfer the character currently at the 

top of   p   to the output, then remove it from   p . 

The rules for translating from   L1  to  L   are only slightly more 

complex: 

If the current input character is 

(1) a left parenthesis,  put a "v"   at the top of   p ; 

(2) a functor,  replace the "v" at the top of   p  by the image 

of the functor; 

(3) a variable 

 (a)   transfer it to the output; 

(b)   check  p :  if it is empty or has a "v" on top,  proceed 

 to the next input character; otherwise transfer the 

 character currently at the top of   p   to the output, 

 then remove it from   p , and repeat step (b). 

These algorithms, as well as their inverses,  and algorithms 

for translating in either direction between any pair of members of 

{L,     L1,    L2,   L3, … }   can easily be described in a new notation 

recently devised by Iverson [3]   which lends itself well to the formu- 

lation of proofs of certain interesting and significant properties of 

the algorithms. 

For example, algorithms for translating from   L   to   L3    and 

vice-versa have been devised for which it can be proved that they 

will produce an image formula if and only if the input formula is well- 

formed in the domain of translation.    The image in each case is 

unique, and well-formed in the range. 

Let     Δ   =   ΔH   ΔM   ΔT    be any formula of the domain,   split into 

a head   ΔH  ,  a middle   ΔM  ,  and a tail  ΔT .      ΔM    is well-formed 

in the domain,   while   ΔH   and  ΔT  are arbitrary residues de- 

termined by the choice of  ΔM .      At a certain point in the execution   

of an algorithm,  the remaining input formula will be   ΔM   ΔT , 

some image  Δ′H   of   ΔH   will have been previously generated,   and 

p   will be    p(ΔH )  ,  namely a function of   ΔH   only.    While the 

characters of   ΔM    are being scanned,  p  naturally becomes a 

function of   ΔM   as well as of   ΔH ,   but all contributions to    p 

due to   ΔM  will be "above" those due to  ΔH   in the pushdown 

store. 

Every algorithm of the type under consideration operating on 
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formulas of the kind described in the preceding paragraph obeys the 

conditions of a ΔM-theorem which guarantees, for any well-formed, 

ΔM     that once the remaining input formula is   ΔT  ,  then 

(1)    p     is again   p(ΔH),   that is,  no contributions due to   ΔM 

remain, at the top of the pushdown store, 

        (2)   the well-formed image   Δ′M   of  ΔM   will have been ad- 

joined to     Δ′H  . 

By way of illustrating the implications of this theorem we note 

that an algorithm obeying it treats any nested well-formed subformula 

independently of the rest of the formula.    As a consequence,   such 

algorithms,   if fail-safe,   are fail-safe in a particularly satisfactory 

way:    as one example,   taken from natural languages,   prepositional 

phrases or subordinate clauses can emerge unscathed,   even though 

the sentence in which they are embedded may not be analyzable as a 

whole;   as another example,   from automatic programming,   all the 

well-formed subroutines of a program could be found at a single pass 

through a compiler,   even though the program as a whole might not be 

well-formed.    Debugging could therefore be made considerably easier 

than it is in contemporary practice.    Metaphorically speaking,   any 

branch of a tree can be analyzed even though it has been broken off 

its parent branch. 

A more complete and detailed description of these results,   in- 

cluding proofs of the relevant theorems,   is being prepared for 

publication. 
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