
[Proceedings of the National Symposium on Machine Translation, UCLA February 1960] 

 

Session 10:    PROGRAMMING 

 

QUESTIONS AND DISCUSSION 

MERSEL:    The  statement was implied that, with the aid of compilers, 

a linguist who did not know the machine would be able to sit down and 

write his program in such a way that he would have a successful run- 

ning program.    Our experience with automatic programming in the 

area of scientific programming seems to indicate that the man has to 

know the machine, otherwise he is going to get himself into a lot of 

trouble.     The big disadvantage of automatic programming for the non- 

machine man is that not only does he have to know the machine but he 

has to  know his problem.  A machine unfortunately is an idiot.  It does 

exactly what you tell it to do.    I would guess this is proof that it is an 

idiot.  The area of difficulty of communication to programmers is that 

the  communicator  has   not yet formulated his problem. To some extent 

I am reminded of the organization who had given a big bonus to some 

member of the organization who showed how they could save a tremen- 

dous amount of money by installing a computer.     Two years later they 

gave another big bonus to somebody else who showed them how they could 

save a tremendous amount of money by removing the computer.    I think 

in both cases the money was justified.     What happened was that when 

they brought in the computer they found the need to state their problem. 

Dr. Yngve mentioned that eight man-years has gone into coding COMIT. 

In our syntactic analysis which Dr. Garvin described, Dan Wenger, who 

is a fine programmer and who at that time knew no syntax, put four weeks 

into coding the full syntax.    I know that there have been a lot of words 

going back and forth at this meeting but in terms of computer jargon, all 

this has been an iterative process.     The amount of time that is actually 

required to do the linguistic programming that we are talking about is 

very little compared to the amount of time that is required for creating 

a compiler.     Furthermore, with a compiler a tremendous amount of 

efficiency is  sacrificed.     The professional programmer who builds it is 

in a position where he has to be a mind reader.     The better a systems 

man he is,   the more he has to figure out what everybody will want, and 

in this case he has to build a tremendous amount of inefficiency in it to 

take care of everybody's needs.    Debugging is tougher when you have 

written in a non-machine language,   at least when it is in machine 

language the programmer can find out why the program did not run. 

Someone suggested that these compilers come up with things that are 

473 



Session 10:   PROGRAMMING 

 

as efficient as that a programmer can do.     However, I am reminded of 

the case when some of our better programmers put a FORTRAN pro- 

gram on,  took out the programming, looked at it and said "If this is 

90% as good as what the average programmer can do, then the average 

programmer should be fired".    I think that Kelly in his MIMIC compiler 

is  suggesting that we have a sound subroutine format so that it is easy 

to create subroutines that will fit in with other subroutines.  One actually 

gets a useful computer tool, but just trying to come up with a language 

which is not a computer language in order to state these problems is 

going to lead to false hopes and people are going to take advantage of 

these false hopes by waiting to use the computers.    My suggestion is to 

use compilers, but never wait for one. 

BLICKSTEIN:   I agree wholeheartedly with the statement just made 

and want to propose some thoughts about what a compiler should be 

for any data processing application.  I would like to point out that people 

interested in MT do not differ very greatly from people interested in 

many other data processing applications, except that they probably do 

not know what they want as much as some other people do.  This is not 

intended as a reflection on any deterministic method--it is merely that 

things are in a state of flux with a number of different ideas being 

exercised and thrown out for examination.    Consequently, it appears 

that what is needed is not a programming language for translating a 

set of algorithms arbitrarily  into a machine language, but rather a 

system which might be used for producing  such systems.    In other 

words, what I propose is a programming system which is rather general 

in scope and which allows the individual programmer to construct what- 

ever language he wishes for his own problem.    We have done some study 

on this problem and it turns out that it is not quite as difficult as it sounds. 

You can produce a system which will disgorge itself,  so to speak, re- 

produce itself,  and it is very easy to add to this  system  or to delete. 

The system would still embody a macro-philosophy,  but it is completely 

interchangeable in that the system once having been modified reappears 

as a new system.    The interpretive system proposed by Dr.  A. F. R. 

Brown does not seem to me to be very  general in scope,  rather it seems 

to be oriented strictly toward the particular translation philosophy which 

he has adopted in his research work.     I would like Dr. Brown to answer 

if that is true or not. 

473 



Session 10:    PROGRAMMING 

BROWN:    It is partly true.    Everybody  else's translation work is a 

special case of mine!    You could even write the prediction and hind- 

sight method in it.    If you really believe in prediction and hindsight 

you certainly will not adopt this kind of programming.     You might be 

able to do it in COMIT; and all the same middle-of-the-road methods 

using several passes at the sentence can be done very nicely; fulcrums 

can be done; what else,  I don't know.    It was done by me in order to get 

my own linguistic thinking on the machine,  and the proof of whether it 

can take other linguistic  ideas and run them is yet to be found.  I know 

of nothing in the system which is so specialized that it excludes the 

ordinary business of testing, altering,  and shifting in a sentence that 

was not coherent.    I want to say something, however,  about a virtue of 

something which I think any linguistic superprogramming system ought 

to have.     There will be better systems but they all ought to at least to 

have the feature that before each macro command is executed, if one 

of the sense switches is on,  then it and the contents of the most impor- 

tant registers are recorded on a monitor tape.  So if it hangs up, or if 

you get a bad translation and you want to find out the reason, then you 

print the monitor tape and start searching.    You have a record of every 

single order which the simulated linguistic computer carried out. This 

is a real advantage over any system of straight coding, however effec- 

tive and elegant the straight coding may be. 

TOMA:    Before I go into compilers and my thinking about compilers, 

I would like to say a few words about our programs at Georgetown which 

we wrote for the IBM 705 model 2, what experience we had with those 

programs,  how we prepared them, how we debugged them,  and how we 

are improving them.    Since we did not have, at the time,  any specific 

compiler available we used the language of the autocoder which is the 

assembly language for the IBM 705.     We found that it took quite a lot 

of time to assemble, debug, and test the routines first with test data 

and later with live data.    I can only say that until we got 40 routines 

compiled and put together into 10 different programs, we spent many 

sleepless nights.    Now we are improving those programs.   Every pro- 

gram has a so-called error tape which lists impossible  occurrences, 

dictionary lookup words which were not available,  how many cases the 

noun-adjective ambiguity was resolved, and what kind of rearrangement 

took place.     We check all this data against our output.    As you know, 

474 



Session 10:    PROGRAMMING 

 

in the system,  described by Professor Zarechnak, we analyze  sentence 

by sentence after the initial dictionary lookup,   we generate codes after 

each word establishing syntagmatic syntactic relationships, and then 

we go to the English sentences and define a translation program which 

includes the rearrangement.     The codes in our present programs are 

somewhat bulky.    In other words, we are using more characters in the 

IBM 705 than we should in an optimum program, but our intention was 

to have easy access to sentences from an intermediate state to check 

our routines.     For example, a preposition that takes at present four 

characters  which, after we rewrite the program, will take only one 

character; and we have an automatic program which outputs for the 

linguists a particular code which he can analyze.    I have spent part of 

my time using the RCA 501 where you will have access to individual 

bits.     There, for example, the morphological output which on an IBM 

705 was  12 characters is only 2 characters.     We are improving and 

checking the output, and we feel that it takes quite a time until a specific 

compiler will be usable for mechanical translation.     Until then I feel 

that we have to give serious consideration to the analysis of compilers 

and the languages for which compilers will be available for all major 

computers.     Such a one is COBOL, which  is the Common Business 

Oriented Language,  and I was quite  surprised to find out that on the 

COBOL committee there is not a single person who is active in machine 

translation.    I think that there should be somebody on that committee 

participating in discussions when they define the finer version of such a 

language.    In the same way we have to consider the commercial trans- 

lator and all other possible languages that are under preparation. 

BLICKSTEIN:    For contrast, I would like to cite the example of the work 

that went into the FORTRAN system as a compiler of scientific work. 

FORTRAN is generally accepted,  easily usable,  and generally applicable 

to any scientific calculation.     On the other side of the fence, consider 

the efforts that have been made to come up with the Common Business 

Oriented Language.     Let us talk about data processing languages.     To 

my recollection,  there has been the SURGE system for the IBM 704, 

9 PAC and COMTRAN for the IBM 709.     There are several other sys- 

tems in the works and they all have one common feature; namely, they 

are not very useful.   Almost every attempt to design a general language 

for data processing or business applications has been a failure because 

there are always a few very serious objections.     The reason for this 

475 



Session 10:   PROGRAMMING 

is that you fix on a particular computer input language which, by its 

very nature,  is going to have certain exclusion points.     There are 

certain things that you just cannot have access to, and it invariably 

occurs that there will be someone who wishes to use this type of 

language who will immediately run into this blank wall.     There are 

certain things they cannot get at, and this is why I want to reiterate 

the point that it is our belief that you do not look for a language that the 

individual language programmer may put his  system together in.  Better 

still, give him the tools to construct the  language to do his job.    I wish 

all the luck in the world to COBOL; I am frankly not very hopeful that 

anything will ever come of it. 

TOMA:    May I answer that?    In the autocoder language that we are 

using for all our programs on Russian-to-English translation we had no 

deficiencies, in other words, no linguistic statement was available 

which could not have been expressed in that particular language.    I 

have not had time to analyze COBOL--I just wanted to throw attention 

on it.    I know a commercial translator and I was able to express every 

linguistic statement that we needed for our translation procedure in that 

language, and I am very anxious to test out a compiler as soon as they 

prepare one. 

JACOBSEN:    The developers of the MIMIC and COMIT systems have 

been faced with a type of translation in their compiler routines that 

translates from their codes to machine language.    I wonder if their 

studies of these problems have lead them to find an advantage in a 

certain type of syntactic theory.    Do they do their translating from 

left to right, top to bottom, or with a pushdown store? 

YNGVE:    The translation that goes on in the COMIT compiler was 

devised not by me but by the M.I.T. computation center programmers. 

I believe it is a good method.    I can't say more about it because I am 

not a programmer and I did not interfere in the design of the compiler. 

Now that it is finished I look at it and I see a number of very interesting 

things in it.    It is a two-path system,  almost.    It starts at the right 

and picks up the "go to the first", then it goes back to the beginning 

of the COMIT rule and makes its first pass straight through.    In the 

meantime, while it is doing this, it gives the beginning of the inter- 

pretation and writes that out on a temporary tape.     Since the compiler 

has to compile a number of lists before completing the compilation, 

4 76 



Session 10:   PROGRAMMING 

these lists and tables are entered at this time.     The second pass goes 

back over the material that was written out on temporary tape and 

utilizes the lists that have been built up already in the core memory 

and,   on the second pass,   the translation is completed.  The final com- 

piled program then comes out again on a temporary tape. 

KELLY:    In general,  I think the details of how MIMIC translates would 

be rather uninteresting.    It does proceed from left to right,  word order 

really is not important,  however, since the symbols have been assigned 

a grammar code or a function code, so to speak.    I am more concerned 

with responding in some way to Mr. Mersel's unanswered challenge of 

automatic programming.    I really don't feel that I am the one most 

capable of doing it.    He made the comment that in so many days or 

weeks his programmers were able to program his complete syntactic 

routine.     This is probably true, and we have had the same experience. 

But what is important is how many other times are you going to have 

to reprogram and how many other times are you going to have to spend 

this time again?    It seems to me that when MT is in a state of research, 

that you are looking for ways,  and you do not want to expend four weeks 

to write a syntactical routine if you can spend four days doing it, or if 

you can spend four weeks writing a system which will allow you to write 

n  different types of syntactical routines.    Maybe it might even be 

worthwhile spending three months to write this system so that you can 

experiment.    At the end of a year it is quite possible that you will have 

tried more different procedures for resolving syntax than you would 

have if you restrict yourself to your programmer's ability to turn out 

machine code.     If you come up with ideas that you would like to try, 

then you are going to have to throw a lot of them away if you do not have 

tools for implementing them rather quickly,  maybe on an inefficient 

basis, that is true, but still enough to test the thing.    I would hope that 

some of the others here have a stronger defense. 

BROWN:    A good system,  though there will be better systems than mine 

I know,  at the very least ought to be such that the linguist, even if he 

has to have a program-minded person at his elbow,  should be able to 

make a run one day and the next day he should be able to make sub- 

stantial changes in several routines and run them on the machine.    I 

don't mean they run correctly,  necessarily--that is the linguists 

bother--but they have got to run and he should get this monitor printout 

477 



Session 10:  PROGRAMMING 

that records  step by step as to how the algorithm worked out.    If he 

cannot do that from  one day to the next,  then you are sacrificing flexi- 

bility for computer speed. 

OETTINGER:    There is reasonable ground for this discussion about the 

relative efficiency and economy of machine coding and compilers,   but 

I would like to try to remove the linguist as the whipping boy in this 

case.     Everybody seems to be concerned with saving the linguist.    I 

would like to express my conviction, based on some experience, that 

linguists are teachable and that they do not need all this help.    I have 

had the great pleasure of working with linguists--young ones who have 

not gotten too steeped in a system that they won't leave--and they take 

to programming like ducks take to water.   They just have to be taught. 

BROWN:    As the only Ph. D.  in linguistics sitting up at this table,  may 

I answer that briefly?   I was a linguist first; then I came to the machine. 

I was awfully teachable,  a very bright boy, I do all my own programming-- 

perfect communication between my two selves.     Nevertheless,  if I did 

not have something like my stupid interpretive routine I could not go on 

the computer the day after I found a mistake with a possible correction 

and try it out. 

MERSEL:    I agree with you,  Mr.  Kelly, that it would be wonderful if 

you could go to the machine the next day.  I keep remembering, however, 

that FORTRAN took roughly 30  man-years to program, at least this 

is IBM's figure,  and I don't know how many more man-years we have put 

into the field.     Fortunately, I have put in very little of that trying to 

field test it and finally get rid of the rest of the bugs and errors.     We 

have comparatively little manpower in the field of machine translation 

to devote either to linguistic analysis or programming.   I would like to 

see this work go not towards building a monstrously large compiler, but 

actually getting routines on the machine so that we could test our ideas 

not in 1 day 30 man-years hence but in 4 weeks from now. 

BROWN:    You can have a program deck for the simulated linguistic 

computer any time you like. 

MERSEL:    Remember that was built by a programmer who understands 

the machine and who also happens to be a linguist.    It was not built 

to be used by somebody who knew nothing about machines. 

478 



Session 10:  PROGRAMMING 

WALL:    It seems to me that in the interpretive routines I have run 

across the programmer seems to end up by using about 25% of his high- 

speed storage for the interpretive program.     The Bell Laboratory 

routine  runs  about 500 words and Professor Yngve's routine is about 

8, 000 words.     So,  when anyone gets into something of that kind he adds 

enough until he has used up all of his space.     We thought we should try 

to develop an interpretive routine for an algebra developed for pro- 

gramming.     However,  we were using the IBM 650 where the maximum 

amount of storage that you could allot to such a program is about 500 

words.     It might have been easier if we had used an interpretive routine. 

I certainly  hope that on the IBM 704 we will be able to try them out. 

Unfortunately, Professor Yngve's COMIT would take up all of our core 

because we ran out of money at 8, 000 words. 

479 


