
[Proceedings of a Workshop on Machine Translation, July 1990, UMIST] 

 

Generation for MT in English in Eurotra 

Ian Crookston 
University of Essex 

Colchester, UK 

SALT Club MT Workshop, 
UMIST, 2-3 June 1990 

1    The Synthesis Task and Formalisms 

In multilingual MT, the “interface” representation that is the input to and out- 
put from transfer is heavily constrained. For modularity, it must not be “tuned” 
to specific target languages, as argued in Krauwer & des Tombe (1984), but must 
be a representation of the language concerned per se. However, to maximise the 
simplicity of the bilingual components of the system, the representation of any 
given sentence must be maximally similar to the representation of translationally 
equivalent sentences in other languages, as argued in van Eynde (1986); Arnold, 
des Tombe & Jaspaert (1985, section 2.2.3); Leermakers & Rous (1986). 

These two apparently conflicting requirements can in fact be used like two 
compass bearings from different points to “fix” the best possible interface repre- 
sentation theory. The Eurotra Reference Manual is mostly taken up with such 
an enterprise, and reports on this will appear in Allegranza et al (forthcom- 
ing). The theory adopted in Eurotra is a predicate-argument type of theory, a 
fact which even without further elaboration has rather definite implications for 
aspects of the synthesis task, as will be seen below. 

Such a fix obviously also fixes the input to synthesis. The task of synthesis 
comes to be definable as the task of mapping from the representation defined by 
the interface theory to a plausible surface tree covering a correct surface string. 

There are certain further givens specific to Eurotra synthesis components. 
The interface representation has always taken the form of a tree, rather than, 
say, a dag. Also, the translation process is performed sequentially, rather than 
being   embodied   in   an   asequential   set   of   constraints   as   in   some   recent   work   such 

1 



as Kaplan et al (1989). This latter given leads to synthesis (like analysis and 
transfer) being isolable as an independent module of the system. 

With all these givens, the most basic imaginable tool for synthesis is probably 
the so-called “t-rule” of the CAT formalism of Arnold et al (1986). In the most 
compact version of this notation, that of Sharp (1988), the t-rules consist of little 
more than the annotated subtree on each end of the mapping. For instance, in 
a synthesis component, there might be a t-rule like 

(1) 

(?,{cat=s}).[ $GOV: (gov,{cat=v}), 
              $ARG1: arg1, 
              $ARG2: arg2 ] 
=> 
(s).[ $ARG1, 

  vp.[ $GOV, 
   $ARG2 ]] 

This had the attractiveness of explicitness and clarity, but when it was applied 
over a wider range of phenomena, two problems emerged. Firstly, the right- 
hand side (RHS) of the t-rules repeated the target grammar. In (1), the RHS 
repeats the statement of the surface grammar that the verb and object are 
dominated by a VP. Secondly, the set of t-rules exploded combinatorially. How 
this emerged depended on details of the grammars involved. For example, in 
the above case, if a second rule were added for passive sentences, then a third 
and fourth would be needed inserting will on the RHS in future active and 
passive sentences. It is impossible to make separate provision for passive and 
future—there is a passive simple-tense rule and a passive future rule. To add 
provision to lower the negation operator into its surface adverbial position now 
requires not another rule but another four rules. 

The current Eurotra formalism, the E-Framework described in Bech & Ny- 
gaard (1988), Raw et al (1988), is a reaction to these difficulties. The general 
route of the EFW to solving these problems is to separate the output of the 
t-grammar from the finished representation in the following way, as described 
in Bech & Nygaard (1988): 

(2) Representation —t-grammar→ DESCRIPTOR—grammar→ 
Representation 

The RHS of each t-rule specifies a local part of a special representation called a 
descriptor. This descriptor is then further processed by the grammar to produce 

2 



a true representation. Nodes such as will can be added in this processing, and 
an unordered descriptor can be specified (using round brackets). So (1) becomes 

(3) 

{cat=s,voice=active}[ GOV:  {role=gov,cat=v} 
    ARG1:  {role=arg1} 
    ARG2:  {role=arg2} ] 

=> 
{voice=active}< ( GOV, ARG1, ARG2 ) > 

and (3) can replace the four t-rules covering future will and voice alternation 
mentioned above. 

To make such a strategy work a number of more powerful devices than are 
available in CAT are needed within the grammar of a level of representation, 
in addition to the unorderedness device in t-rules just mentioned. Among these 
devices are 

(4) 
(a) parsing of descriptors 
(b) insertion of leaves 
(c) downward expansion of leaves 
(d) the Eurotra Coindexation Tools (Allegranza & Bech (1989)) 

These devices have been exploited in the English synthesis component to pro- 
duce a component virtually free of t-rules. 

2    Synthesis Tasks 

The fixed points of interface and surface representations, and the types of dif- 
ference which must of necessity exist between them, define a number of tasks 
which must be performed by a synthesis component. Among these tasks are the 
creation of surface word order, of a VP node, and others which will be discussed 
in detail directly. To aid in these tasks, the English synthesis component fea- 
tures a third level of representation called Eurotra Relational Structure (ERS) 
as a stepping stone between the fixed points mentioned above, which are usu- 
ally referred to as Interface Structure (IS) and Eurotra Constituent Structure 
(ECS). 

3 



2.1    Surface word order 

IS and ERS have the same, conventional, order of constituents. In the case 
of IS this is necessary as a neutralisation of the differing surface word orders 
of the Eurotra languages. Between ERS and ECS this language-neutral and 
conventional order must therefore be turned into the observed word order of 
English. 

The order is first discarded by what is almost the only t-rule in the module, 
which looks like this: 

(5)   M:{}[ D:+{} ]  => M < ( D )  > 

That is, “from any local tree at ERS, make a descriptor with the translation 
of the mother as mother and the translation of the daughters as daughters, the 
latter being unordered”. Almost all local trees are translated to ECS by this 
rule. 

The ECS grammar then has to be written in such a way as to accept as few 
as possible of the many possible orderings which (5) defines. The ECS rules 
thus have to be written in a relatively fine-grained way (something which would 
arguably be undesirable in an analysis grammar), for example the NP rule: 

(6) 

np = {cat=np,ncase=nongen,nb=N,head=H}[ 
* {cat=advp,sf=mod,aptype=noncompl} 
^ ( {cat=np,ncase=gen} ; {cat=detp} ) 
^ {cat=ordp} 
^ {cat=cardp} 
* {cat=ap,aptype=noncompl ,pos=i} 
* {cat=ap,aptype=noncompl,pos=ii} 
* {cat=s,wh=no,compval=nonq, 

aptype=noncompl,mstype=pastpart} 
* {cat=s,wh=no,compval=nonq, 

aptype=noncompl,mstype=prespart} 
* {cat=ap,aptype=noncompl,pos=iii} 
* {cat=np,ncase=nongen,nb=sing,role=attrib} 
{cat=n,nb=N,gb_lu=H} 

^ {cat=pp,role=arg1} 
^ {cat=pp,role=arg2} 
^ {cat=pp,role=arg3} 
*  {cat=pp,role=mod} 
*  {role=mod,cat=np,barenpadv=yes,ncase=nongen} 
*  {cat=ap,aptype=compl} 

4 



* {cat=s,aptype=compl,mstype=pastpart} 
* {cat=s,aptype=compl,mstype=prespart} 
* {cat=s,mstype=infin} 
* {cat=s,mstype=finite} ] . 

Each daughter is fairly heavily subtyped: for example, reduced relatives with 
nothing after the verbal head ("cat=s,aptype=noncompl") are accepted at a 
different point from those with something after it. The sentence rules are sim- 
ilarly subtyped, making great use of syntactic function annotations which are 
added by the ERS grammar. 

2.2    Strongly governed prepositions 

A strongly governed preposition such as the on of rely on is not a predicate (or 
a likely translational unit) and cannot feature in IS as a word. It therefore must 
come into existence at some point in synthesis. 

The IS representation, which is identical to the ERS descriptor, is 

(7) 
{cat=s}[ {role=gov,word=rely,pformarg2=on> 
       … 

{role=arg2,cat=np,pform=on} ] 

The sentence node will also be decorated with a feature signifying its voice. 
This descriptor then has to be processed by the following ERS cf rules: 

(8)(a) 
{cat=8,voice=active} [ {role=gov,sf=gov,pformarg2=P} 
                       … 

    {role=arg2,sf=obl,cat=pp,head=P} ] 

(b) 

{cat=pp,role=R,sf=obl,head=P}[!  {cat=p,word=P} 
       {cat=np,role=R, 
       pform=P} ] 

5 



(c) 
{cat=s,voice=passive}[  {role=gov,sf=gov,pformarg2=P} 
                         …. 

    {role=arg2, cat=np, sf=subj} 
  !  {cat=pp,sf=obl,head=P} ] 

(8)(b) makes use of the insertion device (4)(b) in the obvious way. The node 
marked “!” is added to the tree. If active, the descriptor is parsed as mentioned 
in (4)(a), which means that a PP node is built above the arg2 by (8)(b), and 
this arg2 is then acceptable to (8)(a). If the descriptor is passive, (8)(b) will 
not fire. The arg2 is accepted by (8)(c) directly, which then inserts an extra 
PP daughter with the head on. The sf markings subj and obl are used in the 
reordering process described in the preceding section to order the constituents 
appropriately: the result will be surface strings like The system was relied on, 
with a stranded preposition. 

2.3    Aspect and Voice 

Aspect and voice are represented as feature decorations on the IS tree. This is 
so that they can be translated orthogonally to the main lexical and relational 
content of the sentence. For example: 

(9) {voice=passive,aspect=progressive} 

These annotations must be mapped into sequences of surface auxiliaries, and 
for a compact and perspicuous treatment each pairing of an annotation and 
an auxiliary must somehow be expressed individually. If t-rules were used for 
this kind of mapping, each possible combination of annotations would have to 
be treated separately, since these devices do not permit a mapping between an 
annotation and a piece of tree structure. 

An attractive option is to use the “insert and parse” technique illustrated 
with (8)(b) and (8)(a) above. This is done in the ECS grammar. First a VP 
node is added to the tree above the verb and its complements, and then a short 
cascade of rules of the following type is available: 

(10)(a) 

{cat=vp,voice=passive}[! {word=be} 
    {cat=vp,mstype=pastpart, 
    voice=none} ] 

6 



(b) 

{cat=vp,voice=V,aspect=progressive}[ !  {word=be} 
         {cat=vp,voice=V, 
         mstype=prespart, 
         aspect=none} ] 

The main VP is accepted as the VP daughter of (10)(a), and the VP thus 
produced is accepted as the VP daughter of (10)(b). Only with the application 
of (10)(b) is a VP acceptable to the sentence rule produced. 

Another option, much more suited to the bottom-up parsing techniques of 
the present implementation of the E-Framework, is to create the auxiliaries at 
a different stage from the creation of the VP nodes over them. This is what 
is done in the actual English synthesis component. The IS verb is decorated 
with aspect and voice features, and is turned into a "verb group" in the ERS 
descriptor: 

(11) 
IS representation: 
{cat=v,voice=passive,aspect=progressive} 
ERS descriptor: 
{cat=vgrp,voice=passive,aspect=progressive} 

This verb group node is then expanded downwards (the device mentioned in 
(4)(c)), recursively, by a short cascade of such rules as 

(12)(a) 

{cat=vgrp,voice=V,aspect=progressive} [{word=be} 
        {cat=vgrp, voice=V, 
        mstype=prespart, 
        aspect=none> ] 

(b) 

{cat=vgrp,voice=passive,aspect=none}[ {word=be} 
        {cat=v, 
        mstype=pastpart} ] 

so that the ERS representation is 

7 



(13) 

{cat=vgrp,voice=V, 
aspect=progressive}[ {word=be} 

    {cat=vgrp, 
    voice=passive, 
    mstype=prespart, 
    aspect=none}[ {word=be} 
                  {cat=v, 

       mstype=pastpart, 
       voice=none} ]] 

This procedure observes the requirement of pairing annotations and auxiliaries 
individually (there is in principle one rule in (12) for each annotation) while 
avoiding the computational drawbacks associated with a bottom-up parser op- 
erating on rules such as (10). 

2.4    Raising 

The most awkward difference between a predicate-argument representation and 
a surface one will be that which can be termed the raising phenomenon. This 
extends far beyond the narrower theoretical definitions of the phenomenon: the 
difficulty potentially exists in many places where a predicate does not selection- 
ally restrict its surface subject. Thus the synthesis component is faced with the 
probability that it will have to undo long (in principle infinite) chains of raising 
movements: a mapping such as (14) is not unlikely. 

(14) 
may(happen(be-going(seem(fail(they))))) => 
They may happen to be going to seem to fail 

The E-Framework's facility for treating this is the Eurotra Coindexation Tools 
mentioned in (4)(d). The English synthesis component contains a special rule 
something like 

8 



(15) 

raising = {cat=s}[ {cat=vgrp} 
      {att<=>I,cat=np,sf=subj} 
   #1 {cat=s}[ {raising=yes} 
            #2 {cat=s}[ +{} 

                      {cat=np, sf=subj,att=I} 
                      *{}], 
            *{} ], 
    *{} ]. 

This contains the “recursion markers” #1 and #2, which means that it fires 
when it encounters infinite repetitions of the subtree spanned by them, in 
this case an infinite cascade of sentence nodes dominating raising predicates. 
It also contains the “copy operator” <=>, which is an instruction to copy the 
appropriately-marked subtree (here the subject of the bottom sentence of the 
cascade, identified by the variable I matching the copy operator's variable) onto 
its site. 

Thus 
 
 

(16) may(happen(be-going(seem(fail(they))))) 
 
at IS is converted into 
 

(17) may(they,happen(be-going(seem(fail(they))))) 

at ERS. Between ERS and ECS the lower copy of the raised subject is deleted, 
producing the desired output with the normal reordering and other spelling-out 
processes. 

3    Conclusion 

The E-Framework does make it possible to implement MT synthesis for a sub- 
stantial fragment of English without the use of a combinatorially-exploded set 
of t-rules as would be necessary in CAT. The most obvious outstanding “em- 
pirical” problem is idioms: though some common types, such as verb-object 
idioms, can be treated satisfactorily, a general solution is unavailable where the 
working notion is the whole local tree (cf Arnold &: Sadler (1987)). The effect 
of the parsing device (4)(a), which inserts a VP in an ECS sentence descriptor, 
on a coordinate structure is another problem (cf Crookston (to appear)). 

9 



References 

Allegranza, V, &: A Bech (1989) “A Versatile Tool for Treating Unbounded Dependency 
Constructions in NLP and MT Systems”, Gruppo Dima Working Papers 1, Gruppo 
Dima, Turin 

Allegranza, V, S Krauwer & E Steiner (forthcoming) special issue of Machine Trans- 
lation on EUROTRA 

Arnold, D, L des Tombe & L Jaspaert (1985) “Eurotra Linguistic Specifications Version 
3”, DG XIII, CEC, Luxembourg 

Arnold, D, S Krauwer, M Rosner, L des Tombe & G B Varile (1986) “The <C,A>,T 
Framework in EUROTRA: A Theoretically Committed Notation for MT”, in Proceed- 
ings of the 11th International Conference on Computational Linguistics (COLING 86), 
Association for Computational Linguistics, 297-303 

Arnold, D, & L Sadler (1987), “(Non)-Compositionality and Translation”, in Recent 
Developments and Applications of Natural Language Understanding, Unicom Seminars 
Ltd, Uxbridge, 44-67 

Bech, A, & A Nygaard (1988) “The E-Framework: A Formalism for Natural Language 
Processing”, in Proceedings of the 12th International Conference on Computational 
Linguistics (COLING 88), Association for Computational Linguistics, 36-39 

Crookston, I (to appear) “The E-Framework: Emerging Problems”, to appear in Pro- 
ceedings of the 13th International Conference on Computational Linguistics (COLING 
90), Association for Computational Linguistics 

Krauwer, S, & L des Tombe (1984) “Transfer in a Multilingual MT System”, in Pro- 
ceedings of the 10th International Conference on Computational Linguistics (COLING 
84), Association for Computational Linguistics, 464-467 

Leermakers, R, & J Rous (1986) “The Translation Method of ROSETTA”, in Com- 
puters and Translation 1, 169-183 

Raw, A, B Vandecapelle, & F van Eynde (1988) “Eurotra: An Overview”, in Interface 
3, 5-32 

Sharp, R (1988), “CAT-2—Implementing a Formalism for Multi-Lingual MT”, in Sec- 
ond International Conference on Theoretical and Methodological Issues in Machine 
Translation of Natural Languages, Carnegie Mellon Univ, Pittsburgh 

van Eynde (1986) “The interface structure level of representation”, in Multilingua 5, 
145-146 

10 
 


