
[Proceedings of a Workshop on Machine Translation, July 1990, UMIST] 

 

The 

EUROTRA 

Machine Translation System 

Anand SYEA 

Centre for Computational Linguistics 

UMIST 

Manchester M60 1QD, UK 

E-mail: anand@uk.ac.umist.ccl 

July, 1990 



1. The Eurotra Machine Translation System 

The Eurotra MT project was launched in order to meet the 
translational needs within the EEC institutions. Currently, it 
involves nine languages (Danish, Dutch, English, French, German, 
Greek, Italian, Portuguese and Spanish) and seventy-two language 
pairs. The system is being developed with a view to translating 
the official EEC documents within the domain of information 
technology. 

2. The place of Eurotra within Machine Translation 

2.1 Design 

Like other MT systems, Eurotra accepts the principle that 
translation is a three-step process: analysis, transfer and 
synthesis. It is designed to be transfer-based, rather than an 
interlingual system, because there are few ideas about what 
interlingual representations should look like. Accordingly, it 
insists on separate transfer components existing alongside the 
monolingual components (ie analysis and synthesis). 

As a transfer-based system, Eurotra adheres to the following 
general principles: 

- transfer should be as simple as possible 
- analysis and synthesis should be strictly monolingual 
- the output representations of analysis and transfer which 
serve as input to transfer and synthesis respectively are 
called interface structures (or ISs) 

- the mapping of texts onto ISs (and ISs onto texts) 
involves a series of translations and several levels of 
representations.  (This is known as the stratification 
principle) 

2.2 Implementation 

Eurotra uses a special purpose language written in Prolog for 
implementation. This special purpose language is thought to be 
much more user-friendly for the linguists and lexicographers who 
have to formalise and code their grammars and dictionaries. 

3. Formalism and Mechanism 

The Eurotra framework is a model of translation which provides 
the linguists with concepts (ie the different linguistic 
specifications - see below) and tools amongst which are: 

- a user language (a formalism in which to describe a 
language 

- the virtual machine (a mechanism for applying grammar 
rules 

The linguist makes a series of descriptions of a language, of 
different abstraction,  to  correspond to the different levels of 

1 



representation which separate texts from their ISs. A 
description for a particular level is called a generator and the 
relations between generators (and therefore levels of 
representation) are called translators. 

3.1 Representation levels 

In attempting to keep transfer as simple as possible, the gap 
between text and IS is quite large. Relating text and IS is 
therefore a complex task which can be executed only by having 
several intermediate levels of representation. Each level is a 
formal language which is a set of objects, either simple or 
structured. Simple objects are feature bundles (ie sets of 
attribute-value pairs) and these are legal for some level of 
representation only if they are defined by the feature theory of 
that level. Structured objects are trees of feature bundles 
which describe dominance (mother-daughter) relation and 
precedence (sister-sister) relation. Only those structured 
objects which are defined by the generator (grammar) rules may 
exist at a particular level of representation. 

3.2 Generators 

3.2.1 Consolidation 

A generator consists of the grammar rules of a level. The input 
to a generator is a tree structure produced by a translator. 
This tree structure is called an unconsolidated object and can be 
seen as an hypothesis of what the representation will be like 
within the given level. The generator attempts to consolidate 
the input object, by proving that the feature bundle nodes and 
the dominance and precedence relations between nodes conform to 
the feature theory and the grammar rules for the given level. 
This proving mechanism takes the object bottom-up, checking the 
attribute-value pairs and applying generator rules to the object 
by controlled unification. Control is provided by a variant of 
the Earley parsing algorithm (see section 3.2.3 for example). 
The matching of objects and rules can modify the feature bundles 
and their relations. Rules may contain variables as well as 
constant values, and these variables may become instantiated by 
unification. In this way agreement and percolation of features 
can be dealt with in generator rules. When all nodes and their 
relations have been consolidated, a consolidated object is 
produced by the generator. The output may be more than one 
object, if the input tree matches rules in several ways or if it 
matches several alternative rules. If the object cannot be 
proved, consolidation fails and there is no output. 

3.2.2 Generator Rules 

There are three basic rule types in a generator: structure 
building rules, feature rules and filter rules, and all of them 
have the same basic shape: 

2 



fbd [ arg , arg  ... , arg ] 
1    2          n 

where the head of the rule is a feature bundle description (these 
are the descriptions in rules of the feature bundles in objects) 
and each argument in the body of the rule is either a feature 
bundle description or itself a head with its own arguments 
(recursive) depending upon the specific rule-type. The head of 
the rule has immediate dominance over the sequence of arguments 
in the body of the rule which are ordered according to the 
precedence relation. 

Structure building rules are the main rule type in a generator, 
the first type to apply to input objects, and the controllers of 
the process of consolidation. They also provide the main 
description of all well-formed objects for their levels of 
representation. 

Feature rules cannot modify the structure of objects but may 
alter the information contained within feature bundle nodes to 
consolidate the nodes themselves. They are useful for stating 
generalisations regarding feature percolation and agreement that 
structure building rules cannot make. 

The arguments in the head and body of a feature rule contain two 
parts: a condition part and an action part. Feature rules are 
applied to objects if the structure of a rule matches the 
structure of an object and the condition part is satisfied. If 
both conditions are met the action part is performed. The action 
is to either add values (instantiate variables), change values, 
delete values, or any combination of these. A special type of 
feature rule, the lexical feature rule, is used to add dictionary 
information to the feature bundle nodes which are the leaves of 
input objects. 

Filter rules can modify neither the structure of objects nor the 
contents of nodes within objects. They are used to check well- 
formedness, and any object that is deemed ill-formed is deleted. 
The main purpose of filter rules is to filter out any exceptional 
objects created by possible over-generalisations in structure 
building rules and feature rules. There are two types of filter 
rules: strict and killer. Strict filter rules, like feature 
rules, contain condition and action parts. If the structure of a 
rule matches the structure of an object and the condition part is 
satisfied then the rule is applicable. Subsequently the action 
part must also be satisfied for the object to survive - otherwise 
it is considered ill-formed and is deleted. Killer filter rules 
contain condition parts only - the action is always deletion of 
the object. If the structure of a rule matches the structure of 
an object and the condition part is satisfied then the object is 
considered ill-formed and is deleted. 

3.2.3  Example of Generator Rule Application 

As a very simple example of the application of generator rules to 
objects consider the following unconsolidated object: 

3 



{cat=s} < {lex=herons} {lex=eat} {lex=fish} > 

which is the hypothesis that the node {cat=s} dominates the nodes 
between angled brackets and that these nodes have the correct 
precedence relation. That is, 'Is the string "herons eat fish" a 
sentence and, if so, what are its characteristics?' The 
following 'trace' shows how this object is consolidated via 
parsing by unification. (Feature declarations and co-occurrence 
restrictions are omitted for the sake of brevity). 

The generator receives this object bottom-up, so it first tries 
to consolidate the leaves of the object. This takes the form of 
applying lexical feature rules to each node (ie 'dictionary look- 
up') and may well result in a series of consolidated nodes of the 
form: 

{lex=herons, lu=heron, cat=n, nb=plur} 
{lex=eat, lu=eat, cat=v, nb=X, tense=pres} 
{lex=fish, lu=fish, cat=v, nb=X, tense=pres} 
{lex=fish, lu=fish, cat=n, nb=X} 

Note that some of the values for nb are uninstantiated variables 
as their values are ambiguous. Also note that the consolidation 
of 'fish' has resulted in two possibilities. 

Although some of the feature bundles themselves can still be 
considered consolidated, the relations between each of the nodes 
and their mother are still weak. This structural consolidation 
of dominance and precedence is the next step. Assume a structure 
building rule of the form: 

{cat=np, nb=X} 
[ {cat=n, nb=X} ] 

which states that the feature bundle description {cat=np, nb=X} 
immediately dominates the single feature bundle description 
{cat=n, nb=X}. The consolidated leaves are processed from left 
to right, and this rule unifies with the first of them resulting 
in the structure: 

{cat=np, nb=plur} 
{lex=herons, lu=heron, cat=n, nb=plur} 

Note that the variable for nb has become instantiated by 
unification and has percolated plur to the mother mode. 

Now assume a structure building rule of the form: 

{cat=vp, nb=X} 
[ {cat=v, nb=X} 
{cat=np}  ] 

The second of the consolidated leaves unifies with the first 
argument in the body of the rule resulting in the structure: 

{cat=vp, nb=X} 
{lex=eat, lu=eat, cat=v, nb=X, tense=pres} 
{cat=np} 

4 



This time the value for nb is not instantiated as it is still 
ambiguous. We are now looking for an object to unify with the 
second argument of this rule (ie {cat=np}). The first of our 
rules unifies with only one of our readings for 'fish', resulting 
in the structure: 

{cat=np, nb=X} 
{lex=fish, lu=fish, cat=n, nb=X} 

which then completes the former rule resulting in the structure: 

{cat=vp, nb=Xl} 
{lex=eat, lu=eat, cat=v, nb=Xl} 
{cat=np, nb=X2} 

{lex=fish, lu=fish, cat=n, nb=X2} 

Note that no relationship is stated between the values of nb for 
some parts of the rule, between, for example, {cat=vp, nb=Xl} and 
{cat=np, nb=X2}. 

Finally, assume a structure building rule of the form: 

{cat=s} 
[ {cat=np, nb=X} 
{cat=vp, nb=X}  ] 

This rule unifies with the two structures we have so far created, 
resulting in the final structure: 

{cat=s} 
{cat=np, nb=plur} 

{lex=herons, lu=heron, cat=n nb=plur} 
{cat=vp, nb=plur} 

{lex=eat, lu=eat, cat=v, nb=plur, tense=pres} 
{cat=np, nb=X} 

{lex=fish, lu=fish, cat=n, nb=X} 

Note that, wherever possible, percolation of values has occurred 
and that the number agreement restriction specified in the body 
of the {cat=s} rule has been satisfied. 

The resulting structure is a fully consolidated object and the 
output from our simple generator. All feature bundle nodes have 
been proven as being well-formed and the structure of the input 
object has been modified to produce consolidated dominance and 
precedence relations. That is, we have proved the initial 
hypothesis that {cat=s} dominates the string of leaves and have 
produced a fully consolidated representation of the result*. 

*Note that the example and the rules are oversimplified. To 
describe even a small fragment of English requires a much larger 
set of more complex rules. The example should suffice, however, 
to give some insight into the workings of unification and bottom- 
up parsing. 

5 



3.3  Translators 

3.3.1 Translation 

Translators are simple devices performing the minimum amount of 
tasks and leaving the bulk of the work to the generators. They 
are 'one-shot' devices in that the output of a source generator 
becomes the input to a target generator without creating any 
intermediate representations within the translator. 

The input to a generator is a single representation which is a 
fully consolidated object created by its source generator. The 
translator processes the representation top-down from the root 
node to the leaves, decomposing the input object into a number of 
unconsolidated sub-objects which are immediately passed on to the 
target generator. The basic principle of the concept of 
translators is thus that of compositionality - the translation of 
an object is a function of the translation of its parts. 

A translator is defined by three components: a feature theory, a 
default translation mechanism, and a set of user-defined 
translator rules. 

The feature theory of a translator defines the set of basic units 
of data over which the translator can operate. For default 
translation, this is defined as the intersection of the feature 
theories of the source and target generators, ie the feature 
declarations and co-occurrence restrictions that exist at both 
levels. For user-defined translator rules it is defined as the 
union of the feature theories of the source and target 
generators. 

Built in to the system is a mechanism for the default translation 
of objects from source to target generators. The mechanism is 
intended to simplify the job of rule-writing by linguists by 
providing a default translation for default cases. The mechanism 
will fire unless overridden by explicit user-defined translator 
rules. The structure of objects is translated by copying 
consolidated dominance and precedence relations between feature 
bundle nodes at the source level into unconsolidated relations at 
the target level. That is, the relations are maintained but 
'weakened' so that they are subject to possible modifications by 
the target generator. Similarly, the features contained in the 
nodes of objects are translated by copying consolidated feature 
bundle nodes at the source level into unconsolidated nodes at the 
target level (provided that those features are part of the 
feature declarations of the target level). 

3.2.2 Translator Rules 

A user can define two types of translator rules: structure 
translator rules and feature translator rules. 

Structure translator rules, if applicable, override structure 
translation by the default mechanism. The rules define the 
translation of consolidated dominance and precedence relations 
between  feature  bundle  nodes  of objects from the source level 

6 



into unconsolidated relations at the target level, for example: 
A:fbd [B:argl, C:arg2, N:argn] 
=> A <B, C, ... N> 

Structure translator rules perform several operations by altering 
the position of indices on the rhs of rules. These operations 
may have the effects of: 

- modifying dominance relations between nodes 
- modifying precedence relations between nodes 
- removing the precedence relation between nodes 
(ie introducing an unordered set) 

- deleting nodes 
- inserting nodes 

Feature translator rules, if applicable, override feature 
translation by default mechanism. The rules define the 
translation of consolidated features contained in feature bundle 
nodes from the source level into unconsolidated features at the 
target level. The rules have the same basic form as structure 
translator rules. That is, a lhs, the => operator, and a rhs: 

fbd [arg , arg , ... , arg ] => fbd 
1     2 n 

The type of operations that feature translator rules perform are 
changing the value of features, introducing new features and 
deleting features, all in the context of the pattern specified by 
the lhs of the rule. Feature translator rules are also able to 
state generalisations regarding feature translation that 
structure translator rules are unable to make. 

3.3.3  Example of Translator Rule Application 

As a simple example of the translation process, we can examine 
how the object created by the simple generator in section 3.2.3 
might be translated to the next level of representation. Assume 
the structure translator rule: 

A:{cat=s} 
[B:{cat=np} 
~:{cat=vp} 

     [C:{cat=v} 
      D:{cat=np}] ] 
=> A < C:{frame=subj_obj}, B, D > 

which will match with our consolidated object from the previous 
example and create a rhs with altered dominance and precedence 
relations (the {cat=vp} node is deleted and the {cat=v} node is 
'raised', moved, and given some extra information regarding the 
frame that it expects). Features will be translated by the 
default mechanism, with the result that the unconsolidated object 
created by the translator for input to the target generator will 
look something like: 

7 



{cat=s} 
{lu=eat, cat=v, nb=plur, tense=pres, frame=subj_obj} 
{cat=np, nb=plur} 

{lu=heron, cat=n, nb=plur} 
{cat=np, nb=X} 

{lu=fish, cat=n, nb=X} 

3.4  Software implementation 

3.4.1 Implementation of the Virtual Machine 

The generator and translator, which form the 'core' of the 
system, are written in Prolog which offers several advantages: 

- the virtual machine is unification-based and Prolog's 
built-in mechanism of unification offers an ideal 
environment 

- the virtual machine is non-deterministic (ie it computes 
all possible alternatives) and Prolog's backtracking 
mechanism allows this sort of non-determinism 

- the ease of program development within Prolog means 
modifications to the Eurotra framework can be quickly 
implemented 

3.4.2 Software Environment 

A number of tools, written in Prolog, are available to the 
linguists to write correct generator and translator rules. These 
are: 

- a debugging system to trace application rules and their 
effects 

- a pretty-printer to display objects in various formats 
- a command interpreter to manipulate objects 

The 'user language' (ie rules written by linguists) is translated 
into Prolog clauses prior to translation by a compiler written in 
Yacc. 

The Eurotra Translation System also contains an interface to the 
Unify relational database system where a large number of 
dictionary items are stored. Also, the interface between user 
and ETS is in the form of a menu-driven interface which enables 
the user to access components of the system and external tools 
such as editors and the operating system UNIX. 

4.  Linguistic Specifications 

This section looks at the linguistic contents of the 
representation levels. As was mentioned earlier, Eurotra 
embodies the principle of stratification, ie texts are related to 
their interface structures (which turn out to be the most 
abstract level of representation) via a series of intermediate 
levels of representations. The current assumption is that there 
are three levels of representation between a text and its IS: 

8 



(source  language)  Text =>  EMS  =>  ECS  =>  ERS  =>  IS 
(target language)  Text  <=  EMS  <=  ECS  <=  ERS  <=  IS 

Note that representation languages are linguistic in nature as 
the translation relation between them is a relation between 
linguistic objects. 

4.1 The  Frontend 

The frontend consists of three levels: ETS (Eurotra Text 
Structure), ENT (Eurotra Normalised Text) and EMS (Eurotra 
Morphological Structure). The first two map texts onto a uniform 
machine readable representation. The third, which is more 
linguistic, builds morpho-syntactic representations by 
morphological rules. Cases like inflection would be handled 
here. 

4.2 ECS (Eurotra Configurational Structure) 

An ECS representation is basically a labelled bracketing which 
maintains the linear order of the string and indicates its 
surface constituency as well as expresses generalisations about 
surface word order. Crucially, it does not have empty categories 
nor coindexing and has no notion of head/governor. 

An ECS grammar uses both lexical and phrasal categories which can 
be the traditional categories (eg v, vp, n, np, p, pp, etc) or 
categories like co-ordinator, quantifier, complementiser, etc. 

An example of a grammar rule (in this case a rule for building 
NPs in Dutch - which incidentally also deals with agreement 
outside NP) at ECS is: 

{cat=np, nb=N, gender=G, ncase=Y, ntype=T} 
[^{cat=detp, nb=N, gender=G, msdefs=D}, 
*{cat=ap, nb=N, gender=G, msdefs=D}, 
{cat=n, nb=N, gender=G, ncase=Y, ntype=T}, 

*{cat=pp}] 

4.3 The Deeper Levels 

ERS and IS are both lowered-dependency grammars. They differ 
from ECS as follows: 

- the leading notion is syntactic dependency 
- the order of constituents is canonicalised 
- certain nodes which exist at ECS are featurised, 

eg articles, auxiliaries, verb particles and strongly 
bound prepositions 

Dependents at these levels are either complements (those which 
must fill in a slot in the frame of their governor) or modifiers 
(those which do not fill in a slot). 

9 



Both these levels are constrained by the principles of 
Completeness (all the complements of a governor must be present) 
and Coherence (no more complements are present than the frame of 
the governor admits). 

4.3.1 ERS (Eurotra Relational Structure) 

The leading notion here is surface syntactic dependency. ECS 
objects are translated into representations labelled in terms of 
syntactic functions: subject, object, etc. Phenomena such as 
subject-verb agreement, control, raising and long distance 
dependencies are handled at ERS. 

4.3.2  IS (Interface Structure) 

The  assumption with regard to IS is that it should be as neutral 
as possible with regard to the different languages. It is 
basically a 'linguistic' representation so far since 'real world 
knowledge' is almost non-existent. Unlike ERS, IS represents 
deep syntactic dependency and representations are expressed in 
terms of deep syntactic functions namely argl, arg2, etc, 
augmented with semantic features (eg human, animate, abstract, 
etc) and semantic analyses of such phenomena as Tense, Mood, 
determination, negation and quantification. 

Beside dependent relations, two non-dependent relations also 
exist at IS namely, transconstructional (constituents modifying 
the sentence as a whole) and conjuncts. These relations imply 
the existence at IS of non-lexical governors (in the case of 
transconstructional) and governor-less constructions (in the case 
of conjuncts). 

10 



4.4  Example of ECS, ERS and IS representation 
A sentence like: 

The commission has sent the proposal to the council 

will have the following ECS, ERS and IS representations in 
analysis: 

ECS: 
          s 
          | 
 
 
np                

 
 
 
 
vp 

  
det   n 

the commission 
vgrp np PP 

v      v   det      n    p    np 
has  sent,  the proposal to 

det   n 
the council 

ERS: 
                        s 
 
 
gov, v          subj,np        obj,np           obl,pp 
send 

 

gov,n   mod,det   gov,n    mod,det   gov,p  obj,np 
commission  the       proposal the       to 

                                  gov, n        mod,n 
                                 council         the 

 
    IS:                       s 
 
 
gov, v             arg1,np         arg2,np          arg3,np 
send 

                   gov,n           gov,n            gov,n 
                   commission      proposal         council 

 


