
Proceedings of the 6th Workshop on Statistical Machine Translation, pages 71–77,
Edinburgh, Scotland, UK, July 30–31, 2011. c©2011 Association for Computational Linguistics

AMBER: A Modified BLEU, Enhanced Ranking Metric

Boxing Chen and Roland Kuhn

National Research Council of Canada, Gatineau, Québec, Canada

First.Last@nrc.gc.ca

Abstract

This paper proposes a new automatic ma-

chine translation evaluation metric:

AMBER, which is based on the metric

BLEU but incorporates recall, extra penal-

ties, and some text processing variants.

There is very little linguistic information in

AMBER. We evaluate its system-level cor-

relation and sentence-level consistency

scores with human rankings from the

WMT shared evaluation task; AMBER

achieves state-of-the-art performance.

1 Introduction

Automatic evaluation metrics for machine transla-

tion (MT) quality play a critical role in the devel-

opment of statistical MT systems. Several metrics

have been proposed in recent years. Metrics such

as BLEU (Papineni et al., 2002), NIST (Dodding-

ton, 2002), WER, PER, and TER (Snover et al.,

2006) do not use any linguistic information - they

only apply surface matching. METEOR (Banerjee

and Lavie, 2005), METEOR-NEXT (Denkowski

and Lavie 2010), TER-Plus (Snover et al., 2009),

MaxSim (Chan and Ng, 2008), and TESLA (Liu et

al., 2010) exploit some limited linguistic resources,

such as synonym dictionaries, part-of-speech tag-

ging or paraphrasing tables. More sophisticated

metrics such as RTE (Pado et al., 2009) and DCU-

LFG (He et al., 2010) use higher level syntactic or

semantic analysis to score translations.

Though several of these metrics have shown bet-

ter correlation with human judgment than BLEU,

BLEU is still the de facto standard evaluation me-

tric. This is probably due to the following facts:

1. BLEU is language independent (except for

word segmentation decisions).

2. BLEU can be computed quickly. This is im-

portant when choosing a metric to tune an

MT system.

3. BLEU seems to be the best tuning metric

from a quality point of view - i.e., models

trained using BLEU obtain the highest

scores from humans and even from other

metrics (Cer et al., 2010).

When we developed our own metric, we decided

to make it a modified version of BLEU whose

rankings of translations would (ideally) correlate

even more highly with human rankings. Thus, our

metric is called AMBER: “A Modified Bleu, En-

hanced Ranking” metric. Some of the AMBER

variants use an information source with a mild lin-

guistic flavour – morphological knowledge about

suffixes, roots and prefixes – but otherwise, the

metric is based entirely on surface comparisons.

2 AMBER

Like BLEU, AMBER is composed of two parts: a

score and a penalty.

penaltyscoreAMBER ×= (1)

To address weaknesses of BLEU described in

the literature (Callison-Burch et al., 2006; Lavie

and Denkowski, 2009), we use more sophisticated

formulae to compute the score and penalty.

2.1 Enhancing the score

First, we enrich the score part with geometric av-

erage of n-gram precisions (AvgP), F-measure de-

rived from the arithmetic averages of precision and

recall (Fmean), and arithmetic average of F-

measure of precision and recall for each n-gram

(AvgF). Let us define n-gram precision and recall

as follows:

71

)(#

)(#
)(

Tngrams

RTngrams
np

∩
= (2)

)(#

)(#
)(

Rngrams

RTngrams
nr

∩
= (3)

where T = translation, R = reference.

Then the geometric average of n-gram preci-

sions AvgP, which is also the score part of the

BLEU metric, is defined as:

NN

n

npNAvgP

1

1

)()(

= ∏

=

 (4)

The arithmetic averages for n-gram precision

and recall are:

∑
=

=
N

n

np
N

NP
1

)(
1

)((5)

∑
=

=
M

n

nr
M

MR
1

)(
1

)((6)

 The F-measure that is derived from P(N) and

R(M), (Fmean), is given by:

)()1()(

)()(
),,(

MRNP

MRNP
MNFmean

αα
α

−+
= (7)

The arithmetic average of F-measure of preci-

sion and recall for each n-gram (AvgF) is given by:

∑
= −+

=
N

n nrnp

nrnp

N
NAvgF

1)()1()(

)()(1
),(

αα
α (8)

The score is the weighted average of the three

values: AvgP, Fmean, and AvgF.

),()1(

),,(

)()(

21

2

1

αθθ

αθ

θ

NAvgF

MNFmean

NAvgPNscore

×−−+

×+

×=

 (9)

The free parameters N, M,α ,
1θ and

2θ were

manually tuned on a dev set.

2.2 Various penalties

Instead of the original brevity penalty, we experi-

mented with a product of various penalties:

∏
=

=
P

i

w

i
ipenpenalty

1

 (10)

where wi is the weight of each penalty peni.

Strict brevity penalty (SBP): (Chiang et al.,

2008) proposed this penalty. Let ti be the transla-

tion of input sentence i, and let ri be its reference

(or if there is more than one, the reference whose

length in words || ir is closest to length || it). Set

−=
∑

∑
i ii

i i

rt

r
SBP

|}||,min{|

||
1exp (11)

Strict redundancy penalty (SRP): long sen-

tences are preferred by recall. Since we rely on

both recall and precision to compute the score, it is

necessary to punish the sentences that are too long.

−=

∑
∑

i i

i ii

r

rt
SRP

||

|}||,max{|
1exp (12)

Character-based strict brevity penalty
(CSBP) and Character-based strict redundancy

penalty (CSRP) are defined similarly. The only

difference with the above two penalties is that

here, length is measured in characters.

Chunk penalty (CKP): the same penalty as in

METEOR:
β

γ

×−=

)(#

#
1

wordmatches

chunks
CKP (13)

γ and β are free parameters. We do not compute

the word alignment between the translation and

reference; therefore, the number of chunks is com-

puted as)(#)(## wordmatchesbigrammatcheschunks −= .

For example, in the following two-sentence trans-

lation (references not shown), let “mi” stand for a

matched word, “x” stand for zero, one or more

unmatched words:

S1: m1 m2 x m3 m4 m5 x m6

S2: m7 x m8 m9 x m10 m11 m12 x m13

If we consider only unigrams and bigrams, there

are 13 matched words and 6 matched bigrams (m1

m2, m3 m4, m4 m5, m8 m9, m10 m11, m11 m12), so there

are 13-6=7 chunks (m1 m2, m3 m4 m5, m6, m7, m8 m9,

m10 m11 m12, m13).

Continuity penalty (CTP): if all matched

words are continuous, then

segmentRTgramsn

RTngrams

#)()1(#

)(#

−∩−

∩
 equals 1.

Example:

S3: m1 m2 m3 m4 m5m6

S4: m7 m8 m9m10 m11 m12 m13

There are 13 matched unigrams, and 11 matched

bi-grams; we get 11/(13-2)=1. Therefore, a conti-

nuity penalty is computed as:

72

−∩−

∩

−
−= ∑

=

N

n segmentRTgramsn

RTngrams

N
CTP

2 #)()1(#

)(#

1

1
exp

(14)

Short word difference penalty (SWDP): a

good translation should have roughly the same

number of stop words as the reference. To make

AMBER more portable across all Indo-European

languages, we use short words (those with fewer

than 4 characters) to approximate the stop words.

)
)(#

||
exp(

runigram

ba
SWDP

−
−= (15)

where a and b are the number of short words in the

translation and reference respectively.

Long word difference penalty (LWDP): is de-

fined similarly to SWDP.

)
)(#

||
exp(

runigram

dc
LWDP

−
−= (15)

where c and d are the number of long words (those

longer than 3 characters) in the translation and ref-

erence respectively.

Normalized Spearman’s correlation penalty
(NSCP): we adopt this from (Isozaki et al., 2010).

This penalty evaluates similarity in word order be-

tween the translation and reference. We first de-

termine word correspondences between the

translation and reference; then, we rank words by

their position in the sentences. Finally, we compute

Spearman’s correlation between the ranks of the n

words common to the translation and reference.

)1()1(
1

2

−+
−=

∑
nnn

d
i i

ρ (16)

where di indicates the distance between the ranks

of the i-th element. For example:

T: Bob reading book likes

R: Bob likes reading book

The rank vector of the reference is [1, 2, 3, 4],

while the translation rank vector is [1, 3, 4, 2]. The

Spearman’s correlation score between these two

vectors is
)14(4)14(

)42()34()23(0
1

222

−⋅⋅+

−+−+−+
− =0.90.

In order to avoid negative values, we normalized

the correlation score, obtaining the penalty NSCP:

2)1(/ρNSCP += (17)

Normalized Kendall’s correlation penalty
(NKCP): this is adopted from (Birch and Os-

borne, 2010) and (Isozaki et al., 2010). In the pre-

vious example, where the rank vector of the

translation is [1, 3, 4, 2], there are 62

4 =C pairs of

integers. There are 4 increasing pairs: (1,3), (1,4),

(1,2) and (3,4). Kendall’s correlation is defined by:

1
#

#
2 −×=

pairsall

pairsasingincre
τ (18)

Therefore, Kendall’s correlation for the transla-

tion “Bob reading book likes” is 16/42 −× =0.33.

Again, to avoid negative values, we normalized

the coefficient score, obtaining the penalty NKCP:

2)1(/NKCP τ+= (19)

2.3 Term weighting

The original BLEU metric weights all n-grams

equally; however, different n-grams have different

amounts of information. We experimented with

applying tf-idf to weight each n-gram according to

its information value.

2.4 Four matching strategies

In the original BLEU metric, there is only one

matching strategy: n-gram matching. In AMBER,

we provide four matching strategies (the best

AMBER variant used three of these):

1. N-gram matching: involved in computing

precision and recall.

2. Fixed-gap n-gram: the size of the gap be-

tween words “word1 [] word2” is fixed;

involved in computing precision only.

3. Flexible-gap n-gram: the size of the gap

between words “word1 * word2” is flexi-

ble; involved in computing precision only.

4. Skip n-gram: as used ROUGE (Lin, 2004);

involved in computing precision only.

2.5 Input preprocessing

The AMBER score can be computed with different

types of preprocessing. When using more than one

type, we computed the final score as an average

over runs, one run per type (our default AMBER

variant used three of the preprocessing types):

∑
=

=
T

t

tAMBER
T

AMBERFinal
1

)(
1

_

We provide 8 types of possible text input:

0. Original - true-cased and untokenized.

73

1. Normalized - tokenized and lower-cased.

(All variants 2-7 below also tokenized and

lower-cased.)

2. “Stemmed” - each word only keeps its first

4 letters.

3. “Suffixed” - each word only keeps its last

4 letters.

4. Split type 1 - each longer-than-4-letter

word is segmented into two sub-words,

with one being the first 4 letters and the

other the last 2 letters. If the word has 5

letters, the 4
th
 letter appears twice: e.g.,

“gangs” becomes “gang” + “gs”. If the

word has more than 6 letters, the middle

part is thrown away

5. Split type 2 - each word is segmented into

fixed-length (4-letter) sub-word sequences,

starting from the left.

6. Split type 3 - each word is segmented into

prefix, root, and suffix. The list of English

prefixes, roots, and suffixes used to split

the word is from the Internet
1
; it is used to

split words from all languages. Linguistic

knowledge is applied here (but not in any

other aspect of AMBER).

7. Long words only - small words (those with

fewer than 4 letters) are removed.

3 Experiments

3.1 Experimental data

We evaluated AMBER on WMT data, using WMT

2008 all-to-English submissions as the dev set.

Test sets include WMT 2009 all-to-English, WMT

2010 all-to-English and 2010 English-to-all sub-

missions. Table 1 summarizes the dev and test set

statistics.
Set Dev Test1 Test2 Test3

Year 2008 2009 2010 2010

Lang. xx-en xx-en xx-en en-xx

#system 43 39 53 32

#sent-pair 7,861 13,912 14,212 13,165

Table 1: statistics of the dev and test sets.

1http://en.wikipedia.org/wiki/List_of_Greek_and_Latin_roots_

in_English

3.2 Default settings

Before evaluation, we manually tuned all free pa-

rameters on the dev set to maximize the system-

level correlation with human judgments and de-

cided on the following default settings for

AMBER:

1. The parameters in the formula

),()1(

),,(

)()(

21

2

1

αθθ

αθ

θ

NAvgF

MNFmean

NAvgPNscore

×−−+

×+

×=

are set as N=4, M=1, α =0.9, 1θ = 0.3

and
2θ = 0.5.

2. All penalties are applied; the manually set

penalty weights are shown in Table 2.

3. We took the average of runs over input text

types 1, 4, and 6 (i.e. normalized text,

split type 1 and split type 3).

4. In Chunk penalty (CKP), 3=β , and

γ =0.1.

5. By default, tf-idf is not applied.

6. We used three matching strategies: n-gram,

fixed-gap n-gram, and flexible-gap n-

gram; they are equally weighted.

Name of penalty Weight value

SBP 0.30

SRP 0.10

CSBP 0.15

CSRP 0.05

SWDP 0.10

LWDP 0.20

CKP 1.00

CTP 0.80

NSCP 0.50

NKCP 2.00
Table 2: Weight of each penalty

3.3 Evaluation metrics

We used Spearman’s rank correlation coefficient to

measure the correlation of AMBER with the hu-

man judgments of translation at the system level.

The human judgment score we used is based on the

“Rank” only, i.e., how often the translations of the

system were rated as better than the translations

from other systems (Callison-Burch et al., 2008).

Thus, AMBER and the other metrics were eva-

luated on how well their rankings correlated with

74

the human ones. For the sentence level, we use

consistency rate, i.e., how consistent the ranking of

sentence pairs is with the human judgments.

3.4 Results

All test results shown in this section are averaged

over all three tests described in 3.1. First, we com-

pare AMBER with two of the most widely used

metrics: original IBM BLEU and METEOR v1.0.

Table 3 gives the results; it shows both the version

of AMBER with basic preprocessing, AMBER(1)

(with tokenization and lowercasing) and the default

version used as baseline for most of our experi-

ments (AMBER(1,4,6)). Both versions of AMBER

perform better than BLEU and METEOR on both

system and sentence levels.

Metric Dev 3 tests average ∆ tests

BLEU_ibm

(baseline)

sys

sent

0.68 0.72 N/A

0.37 0.40 N/A

METEOR

 v1.0

sys

sent

0.80 0.80 +0.08

0.58 0.56 +0.17

AMBER(1)

(basic preproc.)

sys

sent

0.83 0.83 +0.11

0.61 0.58 +0.19

AMBER(1,4,6)

(default)

sys

sent

0.84 0.86 +0.14

0.62 0.60 +0.20

 Table 3: Results of AMBER vs BLEU and METEOR

Second, as shown in Table 4, we evaluated the

impact of different types of preprocessing, and

some combinations of preprocessing (we do one

run of evaluation for each type and average the

results). From this table, we can see that splitting

words into sub-words improves both system- and

sentence-level correlation. Recall that input 6 pre-

processing splits words according to a list of Eng-

lish prefixes, roots, and suffixes: AMBER(4,6) is

the best variant. Although test 3 results, for target

languages other than English, are not broken out

separately in this table, they are as follows: input 1

yielded 0.8345 system-level correlation and

0.5848 sentence-level consistency, but input 6

yielded 0.8766 (+0.04 gain) and 0.5990 (+0.01)

respectively. Thus, surprisingly, splitting non-

English words up according to English morpholo-

gy helps performance, perhaps because French,

Spanish, German, and even Czech share some

word roots with English. However, as indicated by

the underlined results, if one wishes to avoid the

use of any linguistic information, AMBER(4) per-

forms almost as well as AMBER(4,6). The default

setting, AMBER(1,4,6), doesn’t perform quite as

well as AMBER(4,6) or AMBER(4), but is quite

reasonable.

Varying the preprocessing seems to have more

impact than varying the other parameters we expe-

rimented with. In Table 5, “none+tf-idf” means

we do one run without tf-idf and one run for “tf-idf

only”, and then average the scores. Here, applying

tf-idf seems to benefit performance slightly.

Input Dev 3 tests average ∆ tests

0

(baseline)

sys

sent

0.84 0.79 N/A

0.59 0.58 N/A

1 sys

sent

0.83 0.83 +0.04

0.61 0.58 +0.00

2 sys

sent

0.83 0.84 +0.05

0.61 0.59 +0.01

3 sys

sent

0.83 0.84 +0.05

0.61 0.58 +0.00

4 sys

sent

0.84 0.87 +0.08

0.62 0.60 +0.01

5 sys

sent

0.82 0.86 +0.07

0.61 0.56 +0.01

6 sys

sent

0.83 0.88 +0.09

0.62 0.60 +0.02

7 sys

sent

0.34 0.56 -0.23

0.58 0.53 -0.05

1,4 sys

sent

0.84 0.85 +0.07

0.62 0.60 +0.01

4,6 sys

sent

0.83 0.88 +0.09

0.62 0.60 +0.02

1,4,6 sys

sent

0.84 0.86 +0.07

0.62 0.60 +0.02

Table 4: Varying AMBER preprocessing (best

linguistic = bold, best non-ling. = underline)

tf-idf Dev 3 tests average ∆ tests

none

(baseline)

sys

sent

0.84 0.86 N/A

0.62 0.60 N/A

tf-idf

only

sys

sent

0.81 0.88 +0.02

0.62 0.61 +0.01

none+tf-

idf

sys

sent

0.82 0.87 +0.01

0.62 0.61 +0.01

Table 5: Effect of tf-idf on AMBER(1,4,6)

Table 6 shows what happens if you disable one

penalty at a time (leaving the weights of the other

penalties at their original values). The biggest sys-

tem-level performance degradation occurs when

LWDP is dropped, so this seems to be the most

75

useful penalty. On the other hand, dropping CKP,

CSRP, and SRP may actually improve perfor-

mance. Firm conclusions would require retuning of

weights each time a penalty is dropped; this is fu-

ture work.

Penalties Dev 3 tests average ∆ tests

All

(baseline)

sys

sent

0.84 0.86 N/A

0.62 0.60 N/A

-SBP sys

sent

0.82 0.84 -0.02

0.62 0.60 -0.00

-SRP sys

sent

0.83 0.88 +0.01

0.62 0.60 +0.00

-CSBP sys

sent

0.84 0.85 -0.01

0.62 0.60 +0.00

-CSRP sys

sent

0.83 0.87 +0.01

0.62 0.60 -0.00

-SWDP sys

sent

0.84 0.86 -0.00

0.62 0.60 +0.00

-LWDP sys

sent

0.83 0.83 -0.03

0.62 0.60 -0.00

-CTP sys

sent

0.82 0.84 -0.02

0.62 0.60 -0.00

-CKP sys

sent

0.83 0.87 +0.01

0.62 0.60 -0.00

-NSCP sys

sent

0.83 0.86 -0.00

0.62 0.60 +0.00

-NKCP sys

sent

0.82 0.85 -0.01

0.62 0.60 +0.00

Table 6: Dropping penalties from AMBER(1,4,6) –

biggest drops on test in bold

Matching Dev 3 tests avg ∆ tests

n-gram + fxd-

gap+ flx-gap

(default)

sys

sent

0.84 0.86 N/A

0.62 0.60 N/A

n-gram sys

sent

0.84 0.86 -0.00

0.62 0.60 -0.00

fxd-gap+

 n-gram

sys

sent

0.84 0.86 -0.00

0.62 0.60 -0.00

flx-gap+

 n-gram

sys

sent

0.83 0.86 -0.00

0.62 0.60 -0.00

skip+

 n-gram

sys

sent

0.83 0.85 -0.01

0.62 0.60 -0.00

All four

matchings

sys

sent

0.83 0.86 -0.01

0.62 0.60 0.00

Table 7: Varying matching strategy for AMBER(1,4,6)

Finally, we evaluated the effect of the matching

strategy. According to the results shown in Table

7, our default strategy, which uses three of the four

types of matching (n-grams, fixed-gap n-grams,

and flexible-gap n-grams) is close to optimal; the

use of skip n-grams (either by itself or in combina-

tion) may hurt performance at both system and

sentence levels.

4 Conclusion

This paper describes AMBER, a new machine

translation metric that is a modification of the

widely used BLEU metric. We used more sophisti-

cated formulae to compute the score, we developed

several new penalties to match the human judg-

ment, we tried different preprocessing types, we

tried tf-idf, and we tried four n-gram matching

strategies. The choice of preprocessing type

seemed to have the biggest impact on performance.

AMBER(4,6) had the best performance of any va-

riant we tried. However, it has the disadvantage of

using some light linguistic knowledge about Eng-

lish morphology (which, oddly, seems to be help-

ful for other languages too). A purist may prefer

AMBER(1,4) or AMBER(4), which use no linguis-

tic information and still match human judgment

much more closely than either BLEU or

METEOR. These variants of AMBER share

BLEU’s virtues: they are language-independent

and can be computed quickly.

Of course, AMBER could incorporate more lin-

guistic information: e.g., we could use linguistical-

ly defined stop word lists in the SWDP and LWDP

penalties, or use synonyms or paraphrasing in the

n-gram matching.

AMBER can be thought of as a weighted com-

bination of dozens of computationally cheap fea-

tures based on word surface forms for evaluating

MT quality. This paper has shown that combining

such features can be a very effective strategy for

attaining better correlation with human judgment.

Here, the weights on the features were manually

tuned; in future work, we plan to learn weights on

features automatically. We also plan to redesign

AMBER so that it becomes a metric that is highly

suitable for tuning SMT systems.

References

S. Banerjee and A. Lavie. 2005. METEOR: An auto-

matic metric for MT evaluation with improved corre-

lation with human judgments. In Proceedings of ACL

Workshop on Intrinsic & Extrinsic Evaluation Meas-

ures for Machine Translation and/or Summarization.

76

A. Birch and M. Osborne. 2010. LRscore for evaluating

lexical and reordering quality in MT. In Proceedings

of the Joint Fifth Workshop on Statistical Machine

Translation and MetricsMATR, pages 302–307.

C. Callison-Burch, C. Fordyce, P. Koehn, C. Monz and

J. Schroeder. 2008. Further Meta-Evaluation of Ma-

chine Translation. In Proceedings of WMT.

C. Callison-Burch, M. Osborne, and P. Koehn. 2006.

Re-evaluating the role of BLEU in machine transla-

tion research. In Proceedings of EACL.

D. Cer, D. Jurafsky and C. Manning. 2010. The Best

Lexical Metric for Phrase-Based Statistical MT Sys-

tem Optimization. In Proceedings of NAACL.

Y. S. Chan and H. T. Ng. 2008. MAXSIM: A maximum

similarity metric for machine translation evaluation.

In Proceedings of ACL.

D. Chiang, S. DeNeefe, Y. S. Chan, and H. T. Ng. 2008.

Decomposability of translation metrics for improved

evaluation and efficient algorithms. In Proceedings

of EMNLP, pages 610–619.

M. Denkowski and A. Lavie. 2010. Meteor-next and the

meteor paraphrase tables: Improved evaluation sup-

port for five target languages. In Proceedings of the

Joint Fifth Workshop on Statistical Machine Transla-

tion and MetricsMATR, pages 314–317.

George Doddington. 2002. Automatic evaluation of

machine translation quality using n-gram co-

occurrence statistics. In Proceedings of HLT.

Y. He, J. Du, A. Way, and J. van Genabith. 2010. The

DCU dependency-based metric in WMT-

MetricsMATR 2010. In Proceedings of the Joint

Fifth Workshop on Statistical Machine Translation

and MetricsMATR, pages 324–328.

H. Isozaki, T. Hirao, K. Duh, K. Sudoh, H. Tsukada.

2010. Automatic Evaluation of Translation Quality

for Distant Language Pairs. In Proceedings of

EMNLP.

A. Lavie and M. J. Denkowski. 2009. The METEOR

metric for automatic evaluation of machine transla-

tion. Machine Translation, 23.

C.-Y. Lin. 2004. ROUGE: a Package for Automatic

Evaluation of Summaries. In Proceedings of the

Workshop on Text Summarization Branches Out

(WAS 2004), Barcelona, Spain.

C. Liu, D. Dahlmeier, and H. T. Ng. 2010. Tesla: Trans-

lation evaluation of sentences with linear-

programming-based analysis. In Proceedings of the

Joint Fifth Workshop on Statistical Machine Transla-

tion and MetricsMATR, pages 329–334.

S. Pado, M. Galley, D. Jurafsky, and C.D. Manning.

2009. Robust machine translation evaluation with en-

tailment features. In Proceedings of ACL-IJCNLP.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.

BLEU: a method for automatic evaluation of ma-

chine translation. In Proceedings of ACL.

M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J.

Makhoul. 2006. A Study of Translation Edit Rate

with Targeted Human Annotation. In Proceedings of

Association for Machine Translation in the Americas.

M. Snover, N. Madnani, B. Dorr, and R. Schwartz.

2009. Fluency, Adequacy, or HTER? Exploring Dif-

ferent Human Judgments with a Tunable MT Metric.

In Proceedings of the Fourth Workshop on Statistical

Machine Translation, Athens, Greece.

77

