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Abstract

We present a novel approach for extracting
a minimal synchronous context-free grammar
(SCFG) for Hiero-style statistical machine
translation using a non-parametric Bayesian
framework. Our approach is designed to ex-
tract rules that are licensed by the word align-
ments and heuristically extracted phrase pairs.
Our Bayesian model limits the number of
SCFG rules extracted, by sampling from the
space of all possible hierarchical rules; addi-
tionally our informed prior based on the lex-
ical alignment probabilities biases the gram-
mar to extract high quality rules leading to im-
proved generalization and the automatic iden-
tification of commonly re-used rules. We
show that our Bayesian model is able to ex-
tract minimal set of hierarchical phrase rules
without impacting the translation quality as
measured by the BLEU score.

1 Introduction

Hierarchical phrase-based (Hiero) machine transla-
tion (Chiang, 2007) has attracted significant interest
within the Machine Translation community. It ex-
tends phrase-based translation by automatically in-
ferring a synchronous grammar from an aligned bi-
text. The synchronous context-free grammar links
non-terminals in source and target languages. De-
coding in such systems employ a modified CKY-
parser that is integrated with a language model.

The primary advantage of Hiero-style systems lie
in their unsupervised model of syntax for transla-
tion: allowing long-distance reordering and cap-
turing certain syntactic constructions, particularly
those that involve discontiguous phrases. It has
been demonstrated to be a successful framework
with comparable performance with other statisti-
cal frameworks and suitable for large-scale cor-
pora (Zollmann et al., 2008). However, one of the

major difficulties in Hiero-style systems has been on
learning a concise and general synchronous gram-
mar from the bitext.

While most of the research in Hiero-style sys-
tems is focused on the improving the decoder, and
in particular the link to the language model, compar-
atively few papers have considered the inference of
the probabilistic SCFG from the word alignments.
A majority of the systems employ the classic rule-
extraction algorithm (Chiang, 2007) which extracts
rules by replacing possible sub-spans (permitted by
the word alignments) with a non-terminal and then
using relative frequencies to estimate the probabilis-
tic synchronous context-free grammar. One of the
issues in building Hiero-style systems is in manag-
ing the size of the synchronous grammar. The origi-
nal approach extracts a larger number of rules when
compared to a phrase-based system on the same data
leading to practical issues in terms of memory re-
quirements and decoding speed.

Extremely large Hiero phrase tables may also lead
to statistical issues, where the probability mass has
to be shared by more rules: the probability p(e|f)
has to be shared by all the rules having the same
source side string f , leading to fragmentation and
resulting in many rules having very poor probability.

Approaches to improve the inference (the induc-
tion of the SCFG rules from the bitext) typically
follows two streams. One focusses on filtering the
extracted hierarchical rules either by removing re-
dundancy (He et al., 2009) or by filtering rules
based on certain patterns (Iglesias et al., 2009),
while the other stream is concerned about alterna-
tive approaches for learning the synchronous gram-
mar (Blunsom et al., 2008; Blunsom et al., 2009; de
Gispert et al., 2010). This paper falls under the lat-
ter category and we use a non-parametric Bayesian
approach for rule extraction for Hiero-style systems.
Our objective in this paper is to provide a principled
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rule extraction method using a Bayesian framework
that can extract the minimal SCFG rules without re-
ducing the BLEU score.

2 Motivation and Related Work

The large number of rules in Hiero-style systems
leads to slow decoding and increased memory re-
quirements. The heuristic rule extraction algo-
rithm (Chiang, 2007) introduces redundant mono-
tone composed rules (He et al., 2009) in the SCFG
grammar. The research on Hiero rule extraction falls
into two broad categories: i) rule reduction by elim-
inating a subset of rules extracted by the heuristic
approach and ii) alternate approaches for rule extrac-
tion.

There have been approaches to reduce the size of
Hiero phrase table, without significantly affecting
the translation quality. He et. al. (2009) proposed the
idea of discarding monotone composed rules from
the phrase table that can instead be obtained dynami-
cally by combining the minimal rules in the same or-
der. They achieve up to 70% reduction in the phrase
table by discarding these redundant rules, without
appreciable reduction in the performance as mea-
sured by BLEU. Empirically analyzing the effective-
ness of specific rule patterns, (Iglesias et al., 2009)
show that some patterns having over 95% of the to-
tal SCFG rules can be safely eliminated without any
reduction in the BLEU score.

Along a different track, some prior works have
employed alternate rule extraction approaches using
a Bayesian framework (DeNero et al., 2008; Blun-
som et al., 2008; Blunsom et al., 2009). (DeNero
et al., 2008) use a Maximum likelihood model of
learning phrase pairs (Marcu and Wong, 2002), but
use sampling to compute the expected counts of the
phrase pairs for the E-step. Other recent approaches
use Gibbs sampler for learning the SCFG by explor-
ing a fixed grammar having pre-defined rule tem-
plates (Blunsom et al., 2008) or by reasoning over
the space of derivations (Blunsom et al., 2009).

We differ from earlier Bayesian approaches in that
our model is guided by the word alignments to rea-
son over the space of the SCFG rules and this re-
stricts the search space of our model. We believe
the word alignments to encode information, useful
for identifying the good phrase-pairs. For example,

several attempts have been made to learn a phrasal
translation model directly from the bitext without
the word alignments (Marcu and Wong, 2002; DeN-
ero et al., 2008; Blunsom et al., 2008), but without
any clear breakthrough that can scale to larger cor-
pora.

Our model exploits the word alignment informa-
tion in the form of lexical alignment probability in
order to construct an informative prior over SCFG
rules and it moves away from a heuristic framework,
instead using a Bayesian non-parametric model to
infer a minimal, high-quality grammar from the
data.

3 Model

Our model is based on similar assumptions as the
original Hiero system. We assume that the bitext has
been word aligned, and that we can use that word
alignment to extract phrase pairs.

Given the word alignments and the heuristically
extracted phrase pairs Rp, our goal is to extract the
minimal set of hierarchical rules Rg that would best
explain Rp. This is achieved by inferring a distribu-
tion over the derivations for each phrase pair, where
the set of derivations collectively specify the gram-
mar. In the following, we denote the sequence of
derivations for the set of phrase pairs by r, which is
composed of grammar rules r. We will essentially
read off our learned grammar from the sequence of
derivations r.

Our non-parametric model reasons over the space
of the (hierarchical and terminal) rules and sam-
ples a set of rules by employing a prior based on
the alignment probability of the words in the phrase
pairs. We hypothesize that the resulting grammar
will be compact and also will explain the phrase
pairs better (the SCFG rules will maximize the like-
lihood of producing the entire set of observed phrase
pairs).

Using Bayes’ rule, the posterior over the deriva-
tions r given the phrase pairs Rp can be written as:

P (r|Rp) ∝ P (Rp|r)P (r) (1)

where P (Rp|r) is equal to one when the sequence
of rules r and phrase-pairs Rp are consistent, i.e. r
can be partitioned into derivations to compose the
set of phrase-pairs such that the derivations respect
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the given word alignments; otherwise P (Rp|r) is
zero. The overall structure of the model is analo-
gous to the Bayesian model for inducing Tree Sub-
stitution Grammars proposed by Cohn et al. (2009).
Note that, our model extracts hierarchical rules for
the word-aligned phrase pairs and not for the sen-
tences.

Similar to the other Hiero-style systems, we use
two types of rules: terminal and hierarchical rules.
For each phrase-pair, our model either generates a
terminal rule by not segmenting the phrase-pair, or
decides to segment the phrase-pair and extract some
rules.

Though it is possible to segment phrase-pairs by
two (or more) non-overlapping spans, we propose
a simpler model in this paper and restrict the hierar-
chical rules to contain only one non-terminal (unlike
the case of classic Hiero-style grammars containing
two non-terminals). This simpler model, samples
the space of derivations and identifies a sub-span
for introducing the non-terminal, which can be ex-
pressed as terminal rules (it is not decomposed fur-
ther). Figure 1 shows an example phrase-pair with
the Viterbi-best word alignment and Figure 2 shows
two possible derivations for the same phrase-pair
with the non-terminals introduced at different sub-
spans. It can be seen that the sub-phrase correspond-
ing to the non-terminal spanX1 is directly written as
a terminal rule and is not decomposed further.

While the resulting model is slightly weaker than
the original Hiero grammar, it should be noted our
simpler model does allow reordering and discontigu-
ous alignments. For example our model includes
rules such as, X → (αX1β, α

′β′X1), which can
capture phrases like (not X1, ne X1 pas) in the case
of English-French translation. In terms of the re-
ordering, our model lies in between the hierarchi-
cal phrase-based and phrase-based models. To sum-
marize, the segmentation of each phrase-pair in our
model results in two rules: a hierarchical rule with
one nonterminal as well as a terminal rule.

More specifically, the generative process for gen-
erating a phrase pair x from the grammar rules
may have two steps as follows. In the first step,
the model decides on the type of the rule tx ∈
{TERMINAL,HIERARCHICAL} used to generate the
phrase-pair based on a Bernoulli distribution, having

a prior γ coming from a Beta distribution:

tx ∼ Bernoulli(γ)

γ ∼ Beta(lx, 0.5)

The lexical alignment probability lx controls the
tendency for extracting hierarchical rules from the
phrase-pair x. For a given phrase-pair, lx is com-
puted by taking the (geometric or arithmetic) aver-
age of the reverse and forward alignment probabil-
ities, which we explain later in this section. Inte-
grating out γ gives us the conditional probabilities
of choosing the rule type tx as:

p(tterm|x) ∝ nx
term + lx (2)

p(thier|x) ∝ nx
hier + 0.5 (3)

where nx
term and nx

hier denote the number of termi-
nal or hierarchical rules, among the rules extracted
so far from the phrase-pair x during the sampling.

In the second step, if the rule type tx =
HIERARCHICAL, the model generates the phrase-
pair by sampling from the hierarchical and terminal
rules. We use a Dirichlet Process (DP) to model the
generation of hierarchical rules r:

G ∼ DP (αh, P0(r))

r ∼ G

Integrating out the grammar G, the predictive dis-
tribution of a hierarchical rule rx for generating the
current phrase-pair (conditioned on the rules from
the rest of the phrase-pairs) is:

p(rx|r−x, αh, P0) ∝ n−x
rx

+ αhP0(rx) (4)

where n−x
rx

is the count of the rule rx in the rest of
the phrase-pairs that is represented by r−x, P0 is the
base measure, and αh is the concentration parameter
controlling the model’s preference towards using an
existing hierarchical rule from the cache or to create
a new rule sanctioned by the base distribution. We
use the lexical alignment probabilities of the compo-
nent rules as our base measure P0:

P0(r) =
[( ∏

(k,l)∈a

p(el|fk)
) 1

|a|

( ∏
(k,l)∈a

p(fk|el)
) 1

|a|
] 1

2 (5)
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octavo y noveno Fondos Europeos de Desarrollo para el ejercicio

Eighth and Ninth European Development Funds for the financial year

Figure 1: An example phrase-pair with Viterbi alignments

X → (Eighth and Ninth X1 for the financial year, octavo y noveno X1 para el ejercicio)

X → (European Development Funds, Fondos Europeos de Desarrollo)

X → (Eighth and Ninth X1, octavo y noveno X1)

X → (European Development Funds for the financial year,

Fondos Europeos de Desarrollo para el ejercicio)

Figure 2: Two possible derivations of the phrase-pair in Figure 1

where a is the set of alignments in the given sub-
span; if the sub-span has multiple Viterbi alignments
from different phrase-pairs, we consider the union of
all such alignments. DeNero et al. (2008) use a sim-
ilar prior- geometric mean of the forward and reverse
IBM-1 alignments. However, we use the product of
geometric means of the forward and reverse align-
ment scores. We also experimented with the arith-
metic mean of the lexical alignment probabilities.
The lexical prior lx in the first step can be defined
similarly. We found the particular combination of,
‘arithmetic mean’ for the lexical prior lx (in the first
step) and ‘geometric mean’ for the base distribution
P0 (in the second step) to work better, as we discuss
later in Section 5.

Assuming the heuristically extracted phrase pairs
to be the input to our inference algorithm, our
approach samples the space of rules to find the
best possible segmentation for the sentences as de-
fined by the cache and base distribution. We ex-
plore a subset of the space of rules being consid-
ered by (Blunsom et al., 2009) — i.e., only those
rules satisfying the word alignments and heuristi-
cally grown phrase alignments.

4 Inference

We train our model by using a Gibbs sampler – a
Markov Chain Monte Carlo (MCMC) method for

sampling one variable in the model, conditional to
the other variables. The sampling procedure is re-
peated for what is called a long Gibbs chain span-
ning several iterations, while the counts are collected
at fixed thin intervals in the chain. As is common in
the MCMC procedures, we ignore samples from a
fixed number of initial burn-in iterations, allowing
the model to move away from the initial bias. The
rules in the final sampler state at the end of the Gibbs
chain along with their counts averaged by the num-
ber of thin iterations become our translation model.

In our model, a sample for a given phrase pair
corresponds either to its terminal derivation or two
rules in a hierarchical derivation. The model sam-
ples a derivation from the space of derivations that
are consistent with the word alignments. In order
to achieve this, we need an efficient way to enumer-
ate the derivations for a phrase pair such that they
are consistent with the alignments. We use the lin-
ear time algorithm to maximally decompose a word-
aligned phrase pair, so as to encode it as a compact
alignment tree (Zhang et al., 2008).

f0 f1 f2 f3 f4

e0 e1 e2 e3 e4 e5

Figure 3: Example phrase pair with alignments.
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For a phrase-pair with a given alignment as shown
in Figure 3, Zhang et al. (2008) generalize theO(n+
K) time algorithm for computing all K common in-
tervals of two different permutations of length n.
The contiguous blocks of the alignment are cap-
tured as the nodes in the alignment tree and the tree
structure for the example phrase pair in Figure 3 is
shown in Figure 4. The italicized nodes form a left-
branching chain in the alignment tree and the sub-
spans of this chain also lead to alignment nodes that
are not explicitly captured in the tree (Please refer
to Zhang et al. (2008) for details). In our work, each
node in the tree (and also each sub-span in the left-
branching chain) corresponds to an aligned source-
target sub-span within the phrase-pair, and is a po-
tential site for introducing the non-terminal X to
generate hierarchical rules.

Given this alignment tree for a phrase pair, a
derivation can be obtained by introducing a non-
terminal at some node nd in the tree and re-writing
the span rooted at nd as a separate rule. As men-
tioned earlier, we compute the derivation probability
as a product of the probabilities of the component
rules, which are computed using the Equation 4.

We initialize the sampler by using our lexical
alignment prior and sampling from the distribution
of derivations as suggested by the priors. We found
this to perform better in practice, than a naive sam-
pler without an initializer.

At each iteration, the Gibbs sampler processes the
phrase pairs in random order. For each phrase pair
Rp, it visits the nodes in the corresponding align-
ment tree and computes the posterior probability of
the derivations and samples from this posterior dis-
tribution. To speedup the sampling, we store the
pre-computed alignment tree for the phrase pairs and
just recompute the derivation probabilities based on
the sampler state at every iteration. While the sam-
pler state is updated with the counts at each iteration,
we accumulate the counts only at fixed intervals in
the Gibbs chain. In applying the model for decoding,
we use the grammar from the final sampler state.

Since our model includes only one hyperparam-
eter αh, we tune its value manually by empirically
experimenting on a small set of initial phrase pairs.
We keep for future work the task of automatically
tuning for hyper-parameter values by sampling.

([0,5],[0,4])

([0,2],[0,2])

([0,1],[0,1])

([0,0],[0,0]) ([1,1],[1,1])

([2,2],[2,2])

([4,5],[3,4])

Figure 4: Decomposed alignment tree for the example
alignment in Fig. 3.

5 Experiments

We use the English-Spanish data from WMT-10
shared task for the experiments to evaluate the effec-
tiveness of our Bayesian rule extraction approach.
We used the entire shared task training set except
the UN data for training translation model and the
language model was trained with the same set and
an additional 2 million sentences from the UN data,
using SRILM toolkit with Knesser-Ney discounting.
We tuned the feature weights on the WMT-10 dev-
set using MERT (Och, 2003) and evaluate on the
test set by computing lower-cased BLEU score (Pa-
pineni et al., 2002) using the WMT-10 standard eval-
uation script.

We use Kriya – an in-house implementation of hi-
erarchical phrase-based translation written predom-
inantly in Python. Kriya supports the entire transla-
tion pipeline of SCFG rule extraction and decoding
with cube pruning (Huang and Chiang, 2007) and
LM integration (Chiang, 2007). We use the 7 fea-
tures (4 translation model features, extracted rules
penalty, word penalty and language model) as is typ-
ical in Hiero-style systems. For tuning the feature
weights, we have adapted the MERT implementa-
tion in Moses1 for use with Kriya as the decoder.

We started by training and evaluating the two
baseline systems using i) two non-terminals and
ii) one non-terminal, which were trained using the
conventional heuristic extraction approach. For the
baseline with one non-terminal, we modified the
heuristic rule extraction algorithm appropriately2.

1www.statmt.org/moses/
2Given an initial phrase pair, the algorithm would introduce

a non-terminal for each sub-span consistent with the alignments
and extract rules corresponding to each sub-span. The con-
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Experiment
# of rules filtered

for devset
(in millions)

BLEU

Baseline (w/ 2 non-terminals) 52.36 27.45
Baseline (w/ 1 non-terminal) 22.09 26.71
Pattern-based filtering† 18.78 24.61
1 non-terminal; monotone & non-monotone 10.36 24.17
1 non-terminal; non-monotone 3.62 23.99

Table 1: Kriya: Baseline and Filtering experiments. †: This is the initial rule set used in Iglesias et al. (2009) obtained
by greedy filtering. Rows 4 and 5 represents the filtering that uses single non-terminal rules with row 4 allowing
monotone rules in addition to the non-monotone (reordering) rules.

As part of the baseline methods to be applied to min-
imize the number of SCFG rules, We also wanted to
assess the effect of a simpler rule filtering, where
the idea is to filter the heuristically extracted rules
based on certain patterns. Our first baseline filtering
strategy uses the heuristic methods in Iglesias et al.
(2009) in order to minimize the number of rules3.
For the other baseline filtering experiments, we re-
tained only one non-terminal rules and then further
limited it by retaining only non-monotone one non-
terminal rules; in both cases the terminal rules were
retained.

Table 1 shows the results for baseline and the rule
filtering experiments. Restricting rule extraction to
just one non-terminal doesn’t affect the BLEU score
significantly and this justifies the simpler model
used in this paper. Secondly, we find significant re-
duction in the BLEU for the pattern-based filtering
strategy and this is because we only use the initial
rule set obtained by greedy filtering without aug-
menting it with other specific patterns. The other
two filtering methods reduced the BLEU further but
not significantly. The second column in the table
gives the number of SCFG rules filtered for the dev-
set, which is typically much less than the full set of
rules. We later use this to put in perspective the
effective reduction in the model size achieved by
our Bayesian model. We can ideally compare our
Bayesian rule extraction using Gibbs sampling with

straints relating to two non-terminals (such as, no adjacent non-
terminals in source side) does not apply for the one non-terminal
case.

3It should be noted that we didn’t use the augmentations to
the initial rule set (Iglesias et al., 2009) and our objective is to
find the impact of the filtering approaches.

the baselines and the filtering approaches. However,
running our Gibbs sampler on the full set of phrase
pairs demand sampling to be distributed, possibly
with approximation (?; ?), which we reserve for our
future work.

In this work, we focus on evaluating our Gibbs
sampler on reasonable sized set of phrase pairs with
corresponding baselines. We filter the initial phrase
pairs based on their frequency using three different
thresholds, viz. 20, 10 and 3- resulting in smaller
sets of initial phrase pairs because we throw out in-
frequent phrase pairs (the threshold-20 case is the
smallest initial set of phrase pairs). This allows us
to run our sampler as a stand-alone instance for the
three sets, obviating the need for distributed sam-
pling.

Table 2 shows the number of unique phrase pairs
in each set. While, the filtering reduces the number
of phrase pairs to a small fraction of the total phrase
pairs, it also increases the unknown words (OOV)
in the test set by a factor between 1.8 and 3. In or-
der to address this issue due to the OOV words, we
additionally added non-decomposable phrase pairs
having just one word at either source or target side,

Phrase-pairs set # of Unique
phrase-pairs

Testset
OOV

All phrase-pairs 110782174 1136
Threshold-20 292336 3735
Threshold-10 606590 3056
Threshold-3 2689855 2067

Table 2: Phrase-pair statistics for different frequency
threshold
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Experiment Threshold-20 Threshold-10 Threshold-3
Baseline (w/ 2 non-terminals) 24.30 25.96 26.34
Baseline (w/ 1 non-terminal) 24.00 25.90 26.83
Bayesian rule extraction 23.39 24.30 25.22

Table 3: BLEU scores: Heuristic vs Bayesian rule extraction

Experiment Rules Extracted (in millions) Reduction
Heuristic (1 nt) Bayesian

Threshold-20 1.93 (0.117) 1.86 (0.07) 3.57 (38.34)
Threshold-10 2.91 (1.09) 2.10 (0.28) 27.7 (73.95)
Threshold-3 7.46 (5.64) 2.45 (0.71) 67.17 (87.28)

Table 4: Model compression: Heuristic vs Bayesian rule extraction

Priors αh BLEU
Arith + Arith means 0.5 22.46
Arith + Geom means 0.5 23.39
Geom + Arith means 0.5 22.96
Arith + Geom means 0.5 22.83
Arith + Geom means 0.1 22.88
Arith + Geom means 0.2 22.97
Arith + Geom means 0.3 22.98
Arith + Geom means 0.4 22.69
Arith + Geom means 0.5 23.39
Arith + Geom means 0.6 22.89
Arith + Geom means 0.7 22.82
Arith + Geom means 0.8 22.82
Arith + Geom means 0.9 22.67

Table 5: Effect of different priors and αh on Threshold-
20 set. The two priors correspond to the lexical prior lx
in the first step and the base distribution P0 in the second
step.

as coverage rules. The coverage rules (about 1.8
million) were added separately to the SCFG rules
induced by both heuristic algorithm and Gibbs sam-
pler. This is justified because we only add the rules
that can not be decomposed further by both rule ex-
traction approaches. However, note that both ap-
proaches can independently induce rules that over-
lap with the coverage rules set and in such cases we
simply add the original corpus count to the counts
returned by the respective rule extraction method.

The Gibbs sampler considers the phrase pairs in
random order at each iteration and induces SCFG

rules by sampling a derivation for each phrase pair.
Given a phrase pair x with raw corpus frequency fx,
we simply scale the count for its sampled deriva-
tion r by its frequency fx. Alternately, we also ex-
perimented with independently sampling for each
instance of the phrase pair and found their perfor-
mances to be comparable. Sampling phrase pairs
once and then scaling the sampled derivation, help
us to speed up the sampling process. In our experi-
ments, we ran the Gibbs sampler for 2000 iterations
with a burn-in period of 200, collecting counts every
50 iterations. We set the concentration parameter αh

to be 0.5 based on our experiments detailed later in
this section.

The BLEU scores for the SCFG learned from the
Gibbs sampler are shown in Table 3. We first note
that, the threshold-20 set has lower baseline BLEU
than threshold-10 and threshold-3 sets, as can be ex-
pected because threshold-20 set uses a much smaller
subset of the full set of phrase pairs to extract hier-
archical rules. The Bayesian approach results in a
maximum BLEU score reduction of 1.6 for the sets
using thresholds 10 and 3, compared to the one non-
terminal baseline. The two non-terminal baseline is
also provided to place our results in perspective.

Table 4 shows the model size, including the cov-
erage rules for the two rule extraction approaches.
The number of extracted rules, excluding the cov-
erage rules are shown within the parenthesis. The
last column shows the reduction in the model size
for both with and without the coverage rules; yield-
ing a maximum absolute reduction of 67.17% for the
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threshold-3 phrase pairs set. It can be seen that the
number of rules are far fewer than the rules extracted
using the baseline heuristic methods for filtering de-
tailed in Table 1. Interestingly, we obtain a smaller
model size, even as we decrease the threshold to in-
clude more initial phrase pairs used as input to the
inference procedure, e.g. a 67.17% reduction over
the rules extracted from the threshold-3 phrase pairs
v.s. a 27.7% reduction for threshold-10.

These results show that our model is capable of
extracting high-value Hiero-style SCFG rules, albeit
with a reduction in the BLEU score. However, our
current approach offers scope for improvement in
several avenues, for example we can use annealing
to perturb the initial sampling iterations to encour-
age the Gibbs sampler to explore several derivations
for each phrase pair. Though this might result in
slightly large models than the current ones, we still
expect substantial reduction than the original Hiero
rule extraction. In future, we also plan to sample the
hyperparameter αh, instead of using a fixed value.

Table 5 shows the effect of different values of
the concentration parameter αh and the priors used
in the model. The order of priors in each setting
correspond to the prior used in deciding the rule-
type and identifying the non-terminal span for sam-
pling a derivation. We found the geometric mean to
work better in both cases. We further found that the
concentration parameter αh value 0.5 gives the best
BLEU score.

6 Conclusion and Future Work

We proposed a novel method for extracting mini-
mal set of hierarchical rules using non-parametric
Bayesian framework. We demonstrated substantial
reduction in the size of extracted grammar with the
best case reduction of 67.17%, as compared to the
heuristic approach, albeit with a slight reduction in
the BLEU scores.

We plan to extend our model to handle two non-
terminals to allow for better reordering. We also
plan to run our sampler on the full set of phrase
pairs using distributed sampling and our prelimi-
nary results in this direction are encouraging. Fi-
nally, we would like to directly sample from the
Viterbi aligned sentence pairs instead of relying on
the heuristically extracted phrase pairs. This can

be accomplished by using a model that is closer
to the Tree Substitution Grammar induction model
in (Cohn et al., 2009) but in our case the model
would infer a Hiero-style SCFG from word-aligned
sentence pairs.
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