
Proceedings of the 7th Workshop on Statistical Machine Translation, pages 59–63,
Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Improving AMBER, an MT Evaluation Metric

Boxing Chen, Roland Kuhn and George Foster

National Research Council Canada

283 Alexandre-Taché Boulevard, Gatineau (Québec), Canada J8X 3X7

{Boxing.Chen, Roland.Kuhn, George.Foster}@nrc.ca

Abstract

A recent paper described a new machine

translation evaluation metric, AMBER. This

paper describes two changes to AMBER. The

first one is incorporation of a new ordering

penalty; the second one is the use of the

downhill simplex algorithm to tune the

weights for the components of AMBER. We

tested the impact of the two changes, using

data from the WMT metrics task. Each of the

changes by itself improved the performance of

AMBER, and the two together yielded even

greater improvement, which in some cases

was more than additive. The new version of

AMBER clearly outperforms BLEU in terms

of correlation with human judgment.

1 Introduction

AMBER is a machine translation evaluation metric

first described in (Chen and Kuhn, 2011). It is de-

signed to have the advantages of BLEU (Papineni

et al., 2002), such as nearly complete language

independence and rapid computability, while at-

taining even higher correlation with human judg-

ment. According to the paper just cited: “It can be

thought of as a weighted combination of dozens of

computationally cheap features based on word sur-

face forms for evaluating MT quality”. Many re-

cently defined machine translation metrics seek to

exploit deeper sources of knowledge than are

available to BLEU, such as external lexical and

syntactic resources. Unlike these and like BLEU,

AMBER relies entirely on matching surface forms

in tokens in the hypothesis and reference, thus sac-

rificing depth of knowledge for simplicity and

speed.

In this paper, we describe two improvements to

AMBER. The first is a new ordering penalty called

“v” developed in (Chen et al., 2012). The second

remedies a weakness in the 2011 version of

AMBER by carrying out automatic, rather than

manual, tuning of this metric’s free parameters; we

now use the simplex algorithm to do the tuning.

2 AMBER

AMBER is the product of a score and a penalty, as

in Equation (1); in this, it resembles BLEU. How-

ever, both the score part and the penalty part are

more sophisticated than in BLEU. The score part

(Equation 2) is enriched by incorporating the

weighted average of n-gram precisions (AvgP), the

F-measure derived from the arithmetic averages of

precision and recall (Fmean), and the arithmetic

average of F-measure of precision and recall for

each n-gram (AvgF). The penalty part is a

weighted product of several different penalties

(Equation 3). Our original AMBER paper (Chen

and Kuhn, 2011) describes the ten penalties used at

that time; two of these penalties, the normalized

Spearman’s correlation penalty and the normalized

Kendall’s correlation penalty, model word reorder-

ing.

penaltyscoreAMBER ×= (1)

AvgF

FmeanAvgPscore

×−−+

×+×=

)1(21

21

θθ

θθ

 (2)

∏
=

=
P

i

w

i
ipenpenalty

1

 (3)

where 1θ and 2θ are weights of each score com-

ponent; wi is the weight of each penalty peni.

59

In addition to the more complex score and pen-

alty factors, AMBER differs from BLEU in two

other ways:

• Not only fixed n-grams, but three different

kinds of flexible n-grams, are used in com-

puting scores and penalties.

• The AMBER score can be computed with

different types of text preprocessing, i.e.

different combinations of several text pre-

processing techniques: lowercasing, to-

kenization, stemming, word splitting, etc. 8

types were tried in (Chen and Kuhn, 2011).

When using more than one type, the final

score is computed as an average over runs,

one run per type. In the experiments re-

ported below, we averaged over two types

of preprocessing.

3 Improvements to AMBER

3.1 Ordering penalty v

We use a simple matching algorithm (Isozaki et

al., 2010) to do 1-1 word alignment between the

hypothesis and the reference.

After word alignment, represent the reference by

a list of normalized positions of those of its words

that were aligned with words in the hypothesis, and

represent the hypothesis by a list of positions for

the corresponding words in the reference. For both

lists, unaligned words are ignored. E.g., let P1 =

reference, P2 = hypothesis:

P1:
1

1p
2

1p
3

1p
4

1p …
ip1 …

np1

 P2:
1

2p
2

2p
3

2p
4

2p …
ip2 …

np2
Suppose we have

Ref: in the winter of 2010 , I visited Paris

Hyp: I visited Paris in 2010 ’s winter

Then we obtain

P1: 1 2 3 4 5 6 (the 2
nd

 word “the”, 4
th

word “of” and 6
th
 word “,” in the reference

are not aligned to any word in the

hypothesis. Thus, their positions are not in

P1, so the positions of the matching words

“in winter 2010 I visited Paris” are nor-

malized to 1 2 3 4 5 6)

P2: 4 5 6 1 3 2 (the word “’s” was

unaligned).

The ordering metric v is computed from two

distance measures. The first is absolute

permutation distance:

∑
=

−=
n

i

ii
ppPPDIST

1

21211 ||),((4)

Let
2/)1(

),(
1 211

1
+

−=
nn

PPDIST
ν (5)

v1 ranges from 0 to 1; a larger value means more

similarity between the two permutations. This

metric is similar to Spearman’s ρ (Spearman,

1904). However, we have found that ρ punishes

long-distance reordering too heavily. For instance,

1ν

is more tolerant than ρ of the movement of

“recently” in this example:

Ref: Recently , I visited Paris

Hyp: I visited Paris recently

P1: 1 2 3 4

P2: 2 3 4 1

Its 2.0-1
1)4(16

)9116(1
−==

−

+++
ρ ; however, its

4.0-1
1)/24(4

3111 ==
+

+++
1v .

Inspired by HMM word alignment (Vogel et al.,

1996), our second distance measure is based on

jump width. This punishes only once a sequence of

words that moves a long distance with the internal

word order conserved, rather than on every word.

In the following, only two groups of words have

moved, so the jump width punishment is light:

Ref: In the winter of 2010, I visited Paris

Hyp: I visited Paris in the winter of 2010

The second distance measure is

∑
=

−−
−−−=

n

i

iiii
ppppPPDIST

1

1

22

1

11212 |)()(|),((6)

where we set 00

1 =p and 00

2 =p . Let

1

),(
1

2

212
2

−
−=

n

PPDIST
v (7)

As with v1, v2 is also from 0 to 1, and larger values

indicate more similar permutations. The ordering

measure vs is the harmonic mean of v1 and v2 (Chen

et al., 2012):

)11(2 21 /v/v/vs +=

. (8)

 In (Chen et al., 2012) we found this to be slightly

more effective than the geometric mean. vs in (8) is

computed at segment level. We compute document

level ordering vD with a weighted arithmetic mean:

60

∑

∑

=

=
×

=
l

s s

l

s ss

D

Rlen

Rlenv
v

1

1

)(

)(
 (9)

where l is the number of segments of the

document, and len(R) is the length of the reference

after text preprocessing. vs is the segment-level

ordering penalty.

Recall that the penalty part of AMBER is the

weighted product of several component penalties.

In the original version of AMBER, there were 10

component penalties. In the new version, v is in-

corporated as an additional, 11th weighted penalty

in (3). Thus, the new version of AMBER incorpo-

rates three reordering penalties: Spearman’s

correlation, Kendall’s correlation, and v. Note that

v is also incorporated in a tuning metric we recent-

ly devised (Chen et al., 2012).

3.2 Automatic tuning

In (Chen and Kuhn, 2011), we manually set the 17

free parameters of AMBER (see section 3.2 of that

paper). In the experiments reported below, we

tuned the 18 free parameters – the original 17 plus

the ordering metric v described in the previous sec-

tion - automatically, using the downhill simplex

method of (Nelder and Mead, 1965) as described

in (Press et al., 2002). This is a multidimensional

optimization technique inspired by geometrical

considerations that has shown good performance in

a variety of applications.

4 Experiments

The experiments are carried out on WMT metric

task data: specifically, the WMT 2008, WMT

2009, WMT 2010, WMT 2011 all-to-English, and

English-to-all submissions. The languages “all”

(“xx” in Table 1) include French, Spanish, German

and Czech. Table 1 summarizes the statistics for

these data sets.

Set Year Lang. #system #sent-pair

Test1 2008 xx-En 43 7,804

Test2 2009 xx-En 45 15,087

Test3 2009 en-Ex 40 14,563

Test4 2010 xx-En 53 15,964

Test5 2010 en-xx 32 18,508

Test6 2011 xx-En 78 16,120

Test7 2011 en-xx 94 23,209

Table 1: Statistics of the WMT dev and test sets.

We used 2008 and 2011 data as dev sets, 2009

and 2010 data as test sets. Spearman’s rank

correlation coefficient ρ was employed to measure

correlation of the metric with system-level human

judgments of translation. The human judgment

score was based on the “Rank” only, i.e., how

often the translations of the system were rated as

better than those from other systems (Callison-

Burch et al., 2008). Thus, BLEU and the new ver-

sion of AMBER were evaluated on how well their

rankings correlated with the human ones. For the

segment level, we followed (Callison-Burch et al.,

2010) in using Kendall’s rank correlation

coefficient τ.

In what follows, “AMBER1” will denote a vari-

ant of AMBER as described in (Chen and Kuhn,

2011). Specifically, it is the variant AMBER(1,4) –

that is, the variant in which results are averaged

over two runs with the following preprocessing:

1. A run with tokenization and lower-casing

2. A run in which tokenization and lower-

casing are followed by the word splitting.

Each word with more than 4 letters is seg-

mented into two sub-words, with one being

the first 4 letters and the other the last 2 let-

ters. If the word has 5 letters, the 4
th
 letter

appears twice: e.g., “gangs” becomes

“gang” + “gs”. If the word has more than 6

letters, the middle part is thrown away.

The second run above requires some explana-

tion. Recall that in AMBER, we wish to avoid use

of external resources such as stemmers and mor-

phological analyzers, and we aim at maximal lan-

guage independence. Here, we are doing a kind of

“poor man’s morphological analysis”. The first

four letters of a word are an approximation of its

stem, and the last two letters typically carry at least

some information about number, gender, case, etc.

Some information is lost, but on the other hand,

when we use the metric for a new language (or at

least, a new Indo-European language) we know

that it will extract at least some of the information

hidden inside morphologically complex words.

The results shown in Tables 2-4 compare the

correlation of variants of AMBER with human

judgment; Table 5 compares the best version of

AMBER (AMBER2) with BLEU. For instance, to

calculate segment-level correlations using

61

Kendall’s τ, we carried out 33,071 paired compari-

sons for out-of-English and 31,051 paired compar-

isons for into-English. The resulting τ was

calculated per system, then averaged for each con-

dition (out-of-English and into-English) to obtain

one out-of-English value and one into-English val-

ue.

First, we compared the performance of

AMBER1 with a version of AMBER1 that in-

cludes the new reordering penalty v, at the system

and segment levels. The results are shown in Table

2. The greatest impact of v is on “out of English” at

the segment level, but none of the results are par-

ticularly impressive.

 AMBER1 +v Change

Into-En

System

0.860 0.862 0.002

(+0.2%)

Into-En

Segment

0.178 0.180 0.002

 (+1.1%)

Out-of-En

System

0.637 0.637 0

 (0%)

Out-of-En

Segment

0.167 0.170 0.003

(+1.8%)

Table 2: Correlation with human judgment for

AMBER1 vs. (AMBER1 including v).

Second, we compared the performance of manu-

ally tuned AMBER1 with AMBER1 whose param-

eters were tuned by the simplex method. The

tuning was run four times on the dev set, once for

each possible combination of into/out-of English

and system/segment level. Table 3 shows the re-

sults on the test set. This change had a greater im-

pact, especially on the segment level.

 AMBER1 +Simplex Change

Into-En

 System

0.860 0.862 0.002

(+0.2%)

Into-En

Segment

0.178 0.184 0.006

(+3.4%)

Out-of-En

 System

0.637 0.637 0

 (0%)

Out-of-En

Segment

0.167 0.182 0.015

(+9.0%)

Table 3: Correlation with human judgment for

AMBER1 vs. simplex-tuned AMBER1.

Then, we compared the performance of

AMBER1 with AMBER1 that contains v and that

has been tuned by the simplex method. We will

denote the new version of AMBER containing

both changes “AMBER2”. It will be seen from

Table 4 that AMBER2 is a major improvement

over AMBER1 at the segment level. In the case of

“into English” at the segment level, the impact of

the two changes seems to have been synergistic:

adding together the percentage improvements due

to v and simplex from Tables 2 and 3, one would

have expected an improvement of 4.5% for both

changes together, but the actual improvement was

6.2%. Furthermore, there was no improvement at

the system level for “out of English” when either

change was tried separately, but there was a small

improvement when the two changes were com-

bined.

 AMBER1 AMBER2 Change

Into-En

System

0.860 0.870 0.010

(+1.2%)

Into-En

Segment

0.178 0.189 0.011

(+6.2%)

Out-of-En

System

0.637 0.642 0.005

(+0.8%)

Out-of-En

Segment

0.167 0.184 0.017

(+10.2%)

Table 4: Correlation with human judgment for

AMBER1 vs. AMBER2.

Of course, the most important question is: does

the new version of AMBER (AMBER2) perform

better than BLEU? Table 5 answers this question

(the version of BLEU used here was smoothed

BLEU (mteval-v13a)). There is a clear advantage

for AMBER2 over BLEU at both the system and

segment levels, for both “into English” and “out of

English”.

 BLEU AMBER2 Change

Into-En

System

0.773 0.870 0.097

(+12.5%)

Into-En

Segment

0.154 0.189 0.035

(+22.7%)

Out-of-En

System

0.574 0.642 0.068

(+11.8%)

Out-of-En

Segment

0.149 0.184 0.035

(+23.5%)

Table 5: Correlation with human judgment for

 BLEU vs. AMBER2.

62

5 Conclusion

We have made two changes to AMBER, a metric

described in (Chen and Kuhn, 2011). In our exper-

iments, the new version of AMBER was shown to

be an improvement on the original version in terms

of correlation with human judgment. Furthermore,

it outperformed BLEU by about 12% at the system

level and about 23% at the segment level.

A good evaluation metric is not necessarily a

good tuning metric, and vice versa. In parallel with

our work on AMBER for evaluation, we have also

been exploring a machine translation tuning metric

called PORT (Chen et al., 2012). AMBER and

PORT differ in many details, but they share the

same underlying philosophy: to exploit surface

similarities between hypothesis and references

even more thoroughly than BLEU does, rather than

to invoke external resources with richer linguistic

knowledge. So far, the results for PORT have been

just as encouraging as the ones for AMBER re-

ported here.

Reference

C. Callison-Burch, P. Koehn, C. Monz, K. Peterson, M.

Przybocki and O. Zaidan. 2010. Findings of the 2010

Joint Workshop on Statistical Machine Translation

and Metrics for Machine Translation. In Proceedings

of WMT.

C. Callison-Burch, C. Fordyce, P. Koehn, C. Monz and

J. Schroeder. 2008. Further Meta-Evaluation of Ma-

chine Translation. In Proceedings of WMT.

B. Chen, R. Kuhn, and S. Larkin. 2012. PORT: a Preci-

sion-Order-Recall MT Evaluation Metric for Tuning.

Accepted for publication in Proceedings of ACL.

B. Chen and R. Kuhn. 2011. AMBER: a Modified

BLEU, Enhanced Ranking Metric. In Proceedings of

the Sixth Workshop on Statistical Machine Transla-

tion, Edinburgh, Scotland.

H. Isozaki, T. Hirao, K. Duh, K. Sudoh, H. Tsukada.

2010. Automatic Evaluation of Translation Quality

for Distant Language Pairs. In Proceedings of

EMNLP.

J. Nelder and R. Mead. 1965. A simplex method for

function minimization. Computer Journal V. 7, pages

308–313.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.

BLEU: a method for automatic evaluation of ma-

chine translation. In Proceedings of ACL.

W. Press, S. Teukolsky, W. Vetterling and B. Flannery.

2002. Numerical Recipes in C++. Cambridge Uni-

versity Press, Cambridge, UK.

C. Spearman. 1904. The proof and measurement of as-

sociation between two things. In American Journal of

Psychology, V. 15, pages 72–101.

S. Vogel, H. Ney, and C. Tillmann. 1996. HMM based

word alignment in statistical translation. In Proceed-

ings of COLING.

63

