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Abstract

The introduction of large-margin based dis-
criminative methods for optimizing statistical
machine translation systems in recent years
has allowed exploration into many new types
of features for the translation process. By
removing the limitation on the number of
parameters which can be optimized, these
methods have allowed integrating millions of
sparse features. However, these methods have
not yet met with wide-spread adoption. This
may be partly due to the perceived complex-
ity of implementation, and partly due to the
lack of standard methodology for applying
these methods to MT. This papers aims to shed
light on large-margin learning for MT, explic-
itly presenting the simple passive-aggressive
algorithm which underlies many previous ap-
proaches, with direct application to MT, and
empirically comparing several widespread op-
timization strategies.

1 Introduction

Statistical machine translation (SMT) systems rep-
resent knowledge sources in the form of features,
and rely on parameters, or weights, on each feature,
to score alternative translations. As in all statistical
models, these parameters need to be learned from
the data. In recent years, there has been a growing
trend of moving away from discriminative training
using batch log-linear optimization, with Minimum-
Error Rate Training (MERT) (Och, 2003) being the
principle method, to online linear optimization (Chi-
ang et al., 2008; Watanabe et al., 2007; Arun and
Koehn, 2007). The major motivation for this has
been that while MERT is able to efficiently optimize

a small number of parameters directly toward an ex-
ternal evaluation metric, such as BLEU (Papineni et
al., 2002), it has been shown that its performance
can be erratic, and it is unable to scale to a large
set of features (Foster and Kuhn, 2009; Hopkins and
May, 2011). Furthermore, it is designed for batch
learning, which may be prohibitive or undesirable
in certain scenarios, for instance if we have a large
tuning set. One or both of these limitations have
led to recent introduction of alternative optimization
strategies, such as minimum-risk (Smith and Eis-
ner, 2006), PRO (Hopkins and May, 2011), Struc-
tured SVM (Cherry and Foster, 2012), and RAM-
PION (Gimpel and Smith, 2012), which are batch
learners, and online large-margin structured learn-
ing (Chiang et al., 2009; Watanabe et al., 2007;
Watanabe, 2012).

A popular method of large-margin optimiza-
tion is the margin-infused relaxed algorithm
(MIRA) (Crammer et al., 2006), which has been
shown to perform well for machine translation, as
well as other structured prediction tasks, such as
parsing. (McDonald et al., 2005). This is an at-
tractive method because we have a simple analytical
solution for the optimization problem at each step,
which reduces to dual coordinate descent when us-
ing 1-best MIRA. It is also quite easy to implement,
as will be shown below.

Despite the proven success of MIRA-based large-
margin optimization for both small and large num-
bers of features, these methods have not yielded
wide adoption in the community. Part of the rea-
son for this is a perception that these methods are
complicated to implement, which has been cited as
motivation for other work (Hopkins and May, 2011;
Gimpel and Smith, 2012). Furthermore, there is a di-
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vergence between the standard application of these
methods in machine learning, and our application
in machine translation (Gimpel and Smith, 2012),
where in machine learning there are usually clear
correct outputs and no latent structures. As a con-
sequence of the above, there is a lack of standard
practices for large-margin learning for MT, which
has resulted in numerous different implementations
of MIRA-based optimizers, which further add to the
confusion.

This paper aims to shed light on practical con-
cerns with online large margin training. Specif-
ically, our contribution is first, to present the
MIRA passive-aggressive update, which underlies
all MIRA-based training, with an eye to applica-
tion in MT. Then, we empirically compare several
widespread as well as novel optimization strategies
for large-margin training on Czech-to-English (cs-
en) and French-to-English (fr-en) translation. Ana-
lyzing the findings, we recommend an optimization
strategy which should ensure convergence and sta-
bility.

2 Large-Margin Learning

2.1 Description

MIRA is an online large-margin learner, and be-
longs to a class of passive-aggressive (PA) algo-
rithms (Crammer et al., 2006). Although the exact
procedure it employs is different from other subgra-
dient optimizers, in essence it is performing a sub-
gradient descent step, where the step size is adjusted
based on each example. The underlying objective
of MIRA is the same as that of the margin rescaled
Structural SVM (Tsochantaridis et al., 2004; Mar-
tins et al., 2010), where we want to predict the cor-
rect output over the incorrect one by a margin at least
as large as the cost incurred by predicting the in-
correct output. However, the norm constraint from
SVM is replaced with a proximity constraint, indi-
cating we want to update our parameters, but keep
them as close as possible to the previous parame-
ter estimates. In the original formulation for sepa-
rable classification (Crammer and Singer, 2003), if
no constraints are violated, no update occurs. How-
ever, when there is a loss, the algorithm updates the
parameters to satisfy the constraints. To allow for
noise in the data, i.e. nonseparable instances, a slack

variable ξi is introduced for each example, and we
optimize a soft-margin. The usual presentation of
MIRA is then given as:

wt+1 = arg min
w

1
2
||w −wt||2 + Cξi

s.t. w>f(xi, yi)−w>f(xi, y
′) ≥ cost(yi, y

′)− ξi

(1)
where f(xi, yi) is a vector of feature functions1, w
is a vector of corresponding parameters, y′ ∈ Y(xi),
where Y(xi) is the space of possible translations we
are able to produce from x,2 and cost(yi, ·) is com-
puted using an external measure of quality, such as
BLEU.

The underlying structured hinge loss objective
function can be rewritten as:

`h = −w>f(xi, yi)+

max
y′∈Y(xi)

(
w>f(xi, y

′) + cost(yi, y
′)
) (2)

2.2 Hypothesis Selection
Our training corpus T = (xi, yi)

T
i=1 for selecting the

parameters w that optimize this objective consists of
input sentences xi in the source language paired with
reference translations yi in the target language. No-
tice that `h depends on computing the margin be-
tween y′ ∈ Y(xi) and the correct output, yi. How-
ever, there is no guarantee that yi ∈ Y(xi) since
our decoder is often incapable of producing the ref-
erence translation yi. Since we need to have some
notion of the correct output in order to compute its
feature vector for the margin, in practice we revert to
using surrogate references in place of yi. These are
often referred to as oracles, y+, which are selected
from the hypothesis space Y(xi) of the decoder.

We are also faced with the problem of how best
to select the most appropriate y′ to shy away from,
which we will refer to as y−. Since optimization will
proceed by setting parameters to increase the score
of y+, and decrease the score of y−, the selection
of these two hypotheses is crucial to success. The
range of possibilities is presented in Eq. 3 below.

1More appropriately, since we only observe translations
yi, which may have many possible derivations dj , we model
the derivations as a latent variable, and our feature functions
are actually computed over derivation and translation pairs
f(xi, yi, dj). We omit dj for clarity.

2The entire hypergraph in hierarchical translation or lattice
in phrase based translation.

481



`r = − max
y+∈Y(xi)

(
γ+w>f(xi, y

+)− β+cost(yi, y
+)

)
+ max

y−∈Y(xi)

(
γ−w>f(xi, y

−) + β−cost(yi, y
−)

)
(3)

Although this formulation has commonly been
referred to as the hinge loss in previous litera-
ture, Gimpel and Smith (2012) have recently pointed
out that we are in fact optimizing losses that are
closer to different variants of the structured ramp
loss. The difference in definition between the two is
subtle, in that for the ramp loss, yi is replaced with
y+. Each setting of γ± and β± corresponds to opti-
mizing a different loss function. Several definitions
of `r have been explored in the literature, and we
discuss them below with corresponding settings of
γ± and β±.

In selecting y+, we vary the settings of γ+ and
β+. Assuming our cost function is based on BLEU,
in setting β+ → 1 and γ+ → 0, if Y(xi) is taken
to be the entire space of possible translations, we
are selecting the hypothesis with the highest BLEU

overall. This is referred to in past work as max-
BLEU (Tillmann and Zhang, 2006) (MB). If we ap-
proximate the search space by restricting Y(xi) to
a k-best list, we have the local-update (Liang et
al., 2006), where we select the highest BLEU can-
didate from those hypotheses that the model consid-
ers good (LU). With increasing k-best size, the max-
BLEU and local-update strategies begin to converge.

Setting both β+ → 1 and γ+ → 1, we ob-
tain the cost-diminished hypothesis, which consid-
ers both the model and the cost, and corresponds to
the “hope” hypothesis in Chiang et al. (2008) (M-
C). This can be computed over the entire space of
hypotheses or a k-best list. In a sense, this is the
intuition that local-updating is after, but expressed
more directly.

The alternatives for selecting y− are quite sim-
ilar. Setting β− → 1 and γ− → 0, we select
the hypothesis with the highest cost (MC). Setting
β− → 0 and γ− → 1, we have the highest scor-
ing hypothesis according to the model, which cor-
responds to prediction-based selection (Crammer et
al., 2006) (PB). Setting both to 1, we have the cost-
augmented hypothesis, which is referred to as the
“fear” (Chiang et al., 2008), and max-loss (Cram-

mer et al., 2006) (M+C). This hypothesis is consid-
ered the most dangerous because it has a high model
score along with a high cost.

Considering the settings for both parts of Eq. 3,
γ+, β+ and γ−, β−, assigning all γ± and β± to 1
corresponds to the most commonly used loss func-
tion in MT (Gimpel and Smith, 2012; Chiang et
al., 2009). This is the “hope”/“fear” pairing, where
we use the cost-diminished hypothesis y+ and cost-
augmented hypothesis y−. Other loss functions have
also been explored, such as γ± → 1, β+ → 1,
β− → 0 (Liang et al., 2006), and something ap-
proximating γ± → 1, β+ → 0, β− → 1 (Cherry
and Foster, 2012), which is closer to the usual loss
used for max-margin in machine learing. To our best
knowledge, other loss functions explored below are
novel to this work.

Since our external metric, BLEU, is a gain, we can
think of the first term in Eq. 3 as the model score plus
the BLEU score, and the second term as the model
minus the BLEU score. That is, with all γ± and β±

set to 1, we want y+ to be the hypothesis with a
high model score, as well as being close to the refer-
ence translation, as indicated by a high BLEU score.
While for y−, we want a high model score, but it
should be far away from the reference, as indicated
by a low BLEU score. The motivation for choosing
y− in this fashion is grounded in the fact that since
we are penalized by this term in the ramp loss ob-
jective, we should try to optimize on it directly. In
practice, we can compute the cost for both terms as
(1-BLEU(y,yi)), or use that as the cost of the first
term, and after selecting y+, compute the cost of y−

by taking the difference between BLEU(y+,yi) and
BLEU(y,yi).

The ramp loss objectives are non-convex, and by
separately computing the max for both y+ and y−,
we are theoretically prohibited from online learning
since we are no longer guaranteed to be optimizing
the desired loss. This is one motivation for the batch
learner, RAMPION (Gimpel and Smith, 2012). How-
ever, as with many non-convex optimization prob-
lems in NLP, such as those involving latent vari-
ables, in practice online learning in this setting be-
haves quite well.
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2.3 Parameter Update

The major practical concern with these methods for
SMT is that oftentimes the implementation aspect
is unclear, a problem which is further exacerbated
by the apparent difficulty of implementation. This
is further compounded with a lack of standard prac-
tices; both theoretical, such as the objective to op-
timize, and practical, such as efficient paralleliza-
tion. The former is a result of the disconnect be-
tween the standard machine learning setting, which
posits reachable references and lack of latent vari-
ables, and our own application. The latter is an
active engineering problem. Both of these aspects
have been receiving recent attention (McAllester et
al., 2010; Mcallester and Keshet, 2011; Gimpel and
Smith, 2012; McDonald et al., 2010), and although
certain questions remain as to the exact loss being
optimized, we now have a better understanding of
the theoretical underpinnings of this method of opti-
mization.

The first adaptations of MIRA-based learning for
structured prediction in NLP utilized a set of k con-
straints, either for y+, y−, or both. This complicated
the optimization by creating a QP problem with a set
of linear constraints which needed to be solved with
either Hildreth’s algorithm or SMO style optimiza-
tion, thereby precluding the possibility of a sim-
ple analytical solution. Later, Chiang (2012) intro-
duced a cutting-plane algorithm, like that of Struc-
tural SVM’s (Tsochantaridis et al., 2004), which op-
timizes on a small set of active constraints.

While these methods of dealing with structured
prediction may perform better empirically, they
come with a higher computational cost. Crammer
et al. (2006) shows that satisfying the single most
violated margin constraint, commonly referred to
as 1-best MIRA, is amenable to a simple analyt-
ical solution for the optimization problem at each
step. Furthermore, the 1-best MIRA update is con-
ceptually and practically much simpler, while retain-
ing most of the optimization power of the more ad-
vanced methods. Thus, this is the method we present
below.

Since the MIRA optimization problem is an in-
stance of a general structured problem with an `2

norm, the update at each step reduces to dual co-
ordinate descent (Smith, 2011). In our soft-margin

Algorithm 1 MIRA Training

Require: : Training set T = (xi, yi)
T
i=1, w, C

1: for j ← 1 to N do
2: for i← 1 to T do
3: Y(xi)←Decode(xi,w)
4: y+ ← FindOracle(Y(xi))
5: y− ← FindPrediction(Y(xi))
6: margin← w>f(xi, y

−)−w>f(xi, y
+)

7: cost← BLEU(yi, y
+)− BLEU(yi, y

−)
8: loss = margin + cost
9: if loss > 0 then

10: δ ← min
(
C, loss

‖f(xi,y+)−f(xi,y−)‖2

)
11: w← w+ δ (f(xi, y

+)− f(xi, y
−))

12: end if
13: end for
14: end for
15: return w

Algorithm 2 FindOracle
Require: : Y(xi)

1: if γ+=0 and β+=1 then
2: y+ ← arg maxy∈Y(xi)−cost(yi, y)
3: else if γ+ = β+ = 1 then
4: y+ ← arg maxy∈Y(xi) w

>f(xi, y) −
cost(yi, y)

5: end if
6: return y+

setting, this is analogous to the PA-I update of Cram-
mer et al. (2006). In fact, this update remains largely
intact as the inner core within k-best constraint or
cutting plane optimization. Algorithm 1 presents the
entire training regime necessary for 1-best MIRA
training of a machine translation system. As can be
seen, the parameter update at step 11 depends on the
difference between the features of y+ and y−, where
δ is the step size, which is controlled by the regular-
ization parameter C; indicating how far we are will-
ing to move at each step. Y(xi) may be a k-best list
or the entire space of hypotheses.3

3For a more in depth examination and derivation of large-
margin learning in MT, see (Chiang, 2012).
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Algorithm 3 FindPrediction
Require: : Y(xi)

1: if γ−=0 and β−=1 then
2: y− ← arg maxy∈Y(xi) cost(yi, y)
3: else if γ−=1 and β−=0 then
4: y− ← arg maxy∈Y(xi) w

>f(xi, y)
5: else if γ− = β− = 1 then
6: y− ← arg maxy∈Y(xi) w

>f(xi, y) +
cost(yi, y)

7: end if
8: return y−

3 Experiments

3.1 Setup
To empirically analyze which loss, and thereby
which strategy, for selecting y+ and y− is most
appropriate for machine translation, we conducted
a series of experiments on Czech-to-English and
French-to-English translation. The parallel corpora
are taken from the WMT2012 shared translation
task, and consist of Europarl data along with the
News Commentary corpus. All data were tokenized
and lowercased, then filtered for length and aligned
using the GIZA++ implementation of IBM Model
4 (Och and Ney, 2003) to obtain bidirectional align-
ments, which were symmetrized using the grow-
diag-final-and method (Koehn et al., 2003). Gram-
mars were extracted from the resulting parallel text
and used in our hierarchical phrase-based system us-
ing cdec (Dyer et al., 2010) as the decoder. We con-
structed a 5-gram language model from the provided
English News monolingual training data as well as
the English side of the parallel corpus using the SRI
language modeling toolkit with modified Kneser-
Ney smoothing (Chen and Goodman, 1996). This
was used to create a KenLM (Heafield, 2011).

As the tuning set for both language pairs, we used
the 2051 sentences in news-test2008 (NT08), and re-
port results on the 2525 sentences of news-test2009
(NT09) and 2489 of news-test2010 (NT10).

Corpus Sentences Tokens
en *

cs-en 764K 20.5M 17.5M
fr-en 2M 57M 63M

Table 1: Corpus statistics

pair 1 500 50k 100k
cs-en 17.9 24.9 29.4 29.7
fr-en 20.25 29.9 33.8 34.1

Table 2: Oracle score for model 1-best (baseline) and for
k-best of size 500, 50k, and 100k on NT08

We approximate cost-augmented decoding by ob-
taining a k-best list with k=500 unique best from our
decoder at each iteration, and selecting the respec-
tive hypotheses for optimization from it. To approx-
imate max-BLEU decoding using a k-best list, we set
k=50k unique best hypotheses.4 As can be seen in
Table 2, we found this size was sufficient for our pur-
poses as increasing size led to small improvements
in oracle BLEU score. C is set to 0.01.

For comparison with MERT, we create a base-
line model which uses a small standard set of fea-
tures found in translation systems: language model
probability, phrase translation probabilities, lexi-
cal weighting probabilities, and source word, pass-
through, and word penalties.

While BLEU is usually calculated at the corpus
level, we need to approximate the metric at the sen-
tence level. In this, we mostly follow previous ap-
proaches, where in the first iteration through the cor-
pus we use a smoothed sentence level BLEU approx-
imation, similar to Lin and Och (2004), and in sub-
sequently iterations, the BLEU score is calculated in
the context of the previous set of 1-best translations
of the entire tuning set.

To make parameter estimation more efficient,
some form of parallelization is preferred. While ear-
lier versions of MIRA training had complex paral-
lelization procedures which necessitated passing in-
formation between learners, performing iterative pa-
rameter mixing (McDonald et al., 2010) has been
shown to be just as effective (Chiang, 2012). We
use a simple implementation of this regime, where
we divide the tuning set into n shards and distribute
them amongst n learners, along with the parameter
vector w. Each learner decodes and updates parame-

4We are able to theoretically extract more constraints from
a large list, in the spirit of k-constraints or a cutting plane,
but Chiang (2012) showed that cutting plane performance is
approximately 0.2-0.4 BLEU better than a single constraint, so
although there is a trade off between the simplicity of a single
constraint and performance, it is not substantial.
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cs-en NT09 NT10
LU M-C LU M-C

PB 16.4 18.3 17 19.3
MC 18.5 16 19.1 17.5

M+C 17.8 18.7 18.4 19.6

Table 3: Results with different strategies on cs-en transla-
tion. MERT baseline is 18.4 for NT09 and 19.7 for NT10

ters on its shard of the tuning set, and once all learn-
ers are finished, these n parameter vectors are aver-
aged to form the initial parameter vector for the next
iteration. In our experiments, n=20.

3.2 Results

The results of using different optimization strategies
for cs-en and fr-en are presented in Tables 3 and 4
below. For all experiments, all settings are kept ex-
actly the same, with the only variation being the se-
lection of the oracle y+ and prediction y−. The first
column in each table indicates the method for se-
lecting the prediction, y−. PB indicates prediction-
based, MC is the hypothesis with the highest cost,
and M+C is cost-augmented selection. Analogously,
the headings across the table indicate oracle selec-
tion strategies, with LU indicating local updating,
and M-C being cost-diminished selection.

From the cs-en results in Table 3, we can see that
two settings fair the best: LU oracle selection paired
with MC prediction selection (LU/MC), and M-C
oracle selection paired with M+C prediction selec-
tion (M±C). On both sets, (M±C) performs better,
but the results are comparable. Pairing M-C with
PB is also a viable strategy, while no other pairing is
successful for LU.

When comparing with MERT, note that we use
a hypergraph based MERT (Kumar et al., 2009),
while the MIRA updates are computed from a k-best
list. For max-BLEU oracle selection paired with MC,
the performance decreases substantially, to 15.4 and
16.6 BLEU on NT09 and NT10, respectively. Using
the augmented k-best list did not significantly affect
performance for M-C oracle selection.

For fr-en, we see much the same behavior as in
cs-en. However, here LU/MC slightly outperforms
M±C. From both tasks, we can see that LU is more
sensitive to prediction selection, and can only op-

fr-en NT09 NT10
LU M-C LU M-C

PB 20.5 23.1 22.2 25
MC 23.9 23 25.8 24.8

M+C 22.2 23.6 24 25.4

Table 4: Results with different strategies on fr-en transla-
tion. MERT baseline is 24.2 for NT09 and 26 for NT10

timize effectively when paired with MC. M-C on
the other hand, is more forgiving, and can make
progress with PB and MC, albeit not as effectively
as with M+C.

3.3 Large Feature Set

Since one of the primary motivations for large-
margin learning is the ability to effectively handle
large quantities of features, we further evaluate the
ability of the strategies by introducing a large num-
ber of sparse features into our model. We introduce
sparse binary indicator features of the form com-
monly found in MT research (Chiang et al., 2009;
Watanabe et al., 2007). Specifically, we introduce
two types of features based on word alignment from
hierarchical phrase pairs and a target bigram fea-
ture. The first type, a word pair feature, fires for
every word pair (ei, fj) observed in the phrase pair.
The second, insertion features, account for spurious
words on the target side of a phrase pair by firing for
unaligned target words, associating them with ev-
ery source word, i.e. (ei, fj), (ei, fj+1), etc.. The
target bigram feature fires for every pair of consec-
utive words on the target side (ei, ei+1). In all, we
introduce 650k features for cs-en, and 1.1M for fr-
en. Taking the two best performing strategies from
the baseline model, LU/MC and M±C, we compare
their performance with the larger feature set in Ta-
ble 5.

Although integrating these features does not sig-
nificantly alter the performance on either task, our
purpose was to establish once again that the large-
margin learning framework is capable of effectively
optimizing parameters for a large number of sparse
features in the MT setting.
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Figure 1: Comparison of performance on development set
for cs-en when using LU/MC and M±C selection.
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Figure 2: Comparison of performance on development set
for fr-en when using LU/MC and M±C selection.

fr-en cs-en
NT09 NT10 NT09 NT10

LU/MC 23.9 25.7 18.5 19.6
M±C 23.8 25.4 18.6 19.6

Table 5: Results on cs-en and fr-en with extended feature
set.

4 Discussion

Although the performance of the two strategies is
competitive on the evaluation sets, this does not re-
lay the entire story. For a more complete view of
the differences between optimization strategies, we
turn to Figures 1-6. Figure 1 and 2 present the
comparison of performance on the NT08 develop-
ment set for cs-en and fr-en, respectively, when us-
ing LU/MC to select the oracle and prediction ver-
sus M±C selection. M±C is indicated with a solid
black line, while LU/MC is a dotted red line. The
corpus-level oracle and prediction BLEU scores at
each iteration are indicated with error bars around
each point, using solid lines for M±C and dotted
lines for LU/MC. As can be seen in Figure 1, while
optimizing with M±C is stable and smooth, where
we converge on our optimum after several iterations,
optimizing with LU/MC is highly unstable. This is
at least in part due to the wide range in BLEU scores
for the oracle and prediction, which are in the range
of 10 BLEU points higher or lower than the current
model best. On the contrary, the range of BLEU

scores for the M±C optimizer is on the order of 2
BLEU points, leading to more gradual changes.

We see a similar, albeit slightly less pronounced

behavior on fr-en in Figure 2. M±C optimization
is once again smooth, and converges quickly, with
a small range for the oracle and prediction scores
around the model best. LU/MC remains unstable,
oscillating up to 2 BLEU points between iterations.

Figures 3-6 compare the different optimization
strategies further. In Figures 3 and 5, we use M-C
as the oracle, and show performance on the develop-
ment set while using the three prediction selection
strategies, M+C with a solid blue line, PB with a
dotted green line, and MC with a dashed red line.
Error bars indicate the oracle and prediction BLEU

scores for each pairing as before. In all three cases,
the oracle BLEU score is in about the same range,
as expected, since all are using the same oracle se-
lection strategy. We can immediately observe that
PB has no error bars going down, indicating that the
PB method for selecting the prediction keeps pace
with the model best at each iteration. On the other
hand, MC selection also stands out, since it is the
only one with a large drop in prediction BLEU score.
Crucially, all learners are stable, and move toward
convergence smoothly, which serves to validate our
earlier observation that M-C oracle selection can be
paired with any prediction selection strategy and op-
timize effectively. In both cs-en and fr-en, we can
observe that M±C performs the best.

In Figures 4 and 6, we use LU as the oracle, and
show performance using the three prediction selec-
tion strategies, with each line representing the same
strategy as described above. The major difference,
which is immediately evident, is that the optimizers
are highly unstable. The only pairing which shows
some stability is LU/MC, with both the other predic-
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Figure 3: Comparison of performance on development set
for cs-en of the three prediction selection strategies when
using M-C selection as oracle.
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Figure 4: Comparison of performance on development set
for cs-en of the three prediction selection strategies when
using LU selection as oracle.
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Figure 5: Comparison of performance on development set
for fr-en of the three prediction selection strategies when
using M-C selection as oracle.
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Figure 6: Comparison of performance on development set
for fr-en of the three prediction selection strategies when
using LU selection as oracle.

tion selection methods, PB and M+C significantly
underperforming it.

Given that the translation performance of optimiz-
ing the loss functions represented by LU/MC and
M±C selection is comparable on the evaluation sets
for fr-en and cs-en, it may be premature to make
a general recommendation for one over the other.
However, taking the unstable nature of LU/MC into
account, the extent of which may depend on the tun-
ing set, as well as other factors which need to be
further examined, the current more prudent alterna-
tive is selecting the oracle and prediction pair based
on M±C.

5 Conclusion

In this paper, we strove to elucidate aspects of large-
margin structured learning with concrete application
to the MT setting. Towards this goal, we presented
the MIRA passive-aggressive algorithm, which can

be used directly to effectively tune a statistical MT
system with millions of parameters, in the hope that
some confusion surrounding MIRA-based methods
may be cleared, and more MT researchers can adopt
it for their own use. We then used the presented al-
gorithm to empirically compare several widespread
loss functions and strategies for selecting hypothe-
ses for optimization. We showed that although there
are two competing strategies with comparable per-
formance, one is an unstable learner, and before we
understand more regarding the nature of the insta-
bility, the preferred alternative is to use M±C as the
hypothesis pair in optimization.
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