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Abstract

We present in this paper the system sub-
missions of the SDL Language Weaver
team in the WMT 2012 Quality Estimation
shared-task. Our MT quality-prediction sys-
tems use machine learning techniques (M5P
regression-tree and SVM-regression models)
and a feature-selection algorithm that has been
designed to directly optimize towards the of-
ficial metrics used in this shared-task. The
resulting submissions placed 1st (the M5P
model) and 2nd (the SVM model), respec-
tively, on both the Ranking task and the Scor-
ing task, out of 11 participating teams.

1 Introduction

The WMT 2012 Quality Estimation shared-task fo-
cused on automatic methods for estimating machine
translation output quality at run-time (sentence-level
estimation). Different from MT evaluation met-
rics, quality prediction (QP) systems do not rely
on reference translations and are generally built us-
ing machine learning techniques to estimate quality
scores (Specia et al., 2009; Soricut and Echihabi,
2010; Bach et al., 2011; Specia, 2011).

Some interesting uses of sentence-level MT qual-
ity prediction are the following: decide whether a
given translation is good enough for publishing as-
is (Soricut and Echihabi, 2010), or inform monolin-
gual (target-language) readers whether or not they
can rely on a translation; filter out sentences that
are not good enough for post-editing by professional
translators (Specia, 2011); select the best translation

among options from multiple MT systems (Soricut
and Narsale, 2012), etc.

This shared-task focused on estimating the qual-
ity of English to Spanish automatic translations. The
training set distributed for the shared task comprised
of 1, 832 English sentences taken from the news do-
main and their Spanish translations. The translations
were produced by the Moses SMT system (Koehn et
al., 2007) trained on Europarl data. Translations also
had a quality score derived from an average of three
human judgements of Post-Editing effort using a 1-
5 scale (1 for worse-quality/most-effort, and 5 for
best-quality/least-effort). Submissions were evalu-
ated using a blind official test set of 422 sentences
produced in the same fashion as the training set.
Two sub-tasks were considered: (i) scoring transla-
tions using the 1-5 quality scores (Scoring), and (ii)
ranking translations from best to worse (Ranking).
The official metrics used for the Ranking task were
DeltaAvg (measuring how valuable a proposed rank-
ing is from the perspective of extrinsic values asso-
ciated with the test entries, in this case post-editing
effort on a 1-5 scale; for instance, a DeltaAvg of 0.5
means that the top-ranked quantiles have +0.5 bet-
ter quality on average compared to the entire set), as
well as the Spearman ranking correlation. For the
Scoring task the metrics were Mean-Absolute-Error
(MAE) and Root Mean Squared Error (RMSE). The
interested reader is referred to (Callison-Burch et al.,
2012) for detailed descriptions of both the data and
the evaluation metrics used in the shared-task.

The SDL Language Weaver team participated
with two submissions based on M5P and SVM re-
gression models in both the Ranking and the Scoring
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tasks. The models were trained and used to predict
Post-Editing–effort scores. These scores were used
as-such for the Scoring task, and also used to gener-
ate sentence rankings for the Ranking task by simply
(reverse) sorting the predicted scores. The submis-
sions of the SDL Language Weaver team placed 1st
(the M5P model) and 2nd (the SVM model) on both
the Ranking task (out of 17 entries) and the Scoring
task (out of 19 entries).

2 The Feature Set

Both SDLLW system submissions were created
starting from 3 distinct sets of features: the baseline
feature set (here called BFs), the internal features
available in the decoder logs of Moses (here called
MFs), and an additional set of features that we de-
veloped internally (called LFs). We are presenting
each of these sets in what follows.

2.1 The Baseline Features
The WMT Quality Estimation shared-task defined
a set of 17 features to be used as “baseline” fea-
tures. In addition to that, all participants had access
to software that extracted the corresponding feature
values from the inputs and necessary resources (such
as the SMT-system’s training data, henceforth called
SMTsrc and SMTtrg). For completeness, we are
providing here a brief description of these 17 base-
line features (BFs):

BF1 number of tokens in the source sentence

BF2 number of tokens in the target sentence

BF3 average source token length

BF4 LM probability of source sentence

BF5 LM probability of the target sentence

BF6 average number of occurrences of the target
word within the target translation

BF7 average number of translations per source word
in the sentence (as given by IBM 1 table thresh-
olded so that Prob(t|s) > 0.2)

BF8 average number of translations per source word
in the sentence (as given by IBM 1 table thresh-
olded so that Prob(t|s) > 0.01) weighted

by the inverse frequency of each word in the
source corpus

BF9 percentage of unigrams in quartile 1 of fre-
quency (lower frequency words) in SMTsrc

BF10 percentage of unigrams in quartile 4 of fre-
quency (higher frequency words) in SMTsrc

BF11 percentage of bigrams in quartile 1 of fre-
quency of source words in SMTsrc

BF12 percentage of bigrams in quartile 4 of fre-
quency of source words in SMTsrc

BF13 percentage of trigrams in quartile 1 of fre-
quency of source words in SMTsrc

BF14 percentage of trigrams in quartile 4 of fre-
quency of source words in SMTsrc

BF15 percentage of unigrams in the source sentence
seen in SMTsrc

BF16 number of punctuation marks in source sen-
tence

BF17 number of punctuation marks in target sentence

These features, together with the other ones we
present here, are entered into a feature-selection
component that decides which feature set to use for
optimum performance (Section 3.2).

In Table 1, we are presenting the performance
on the official test set of M5P and SVM-regression
(SVR) models using only the BF features. The
M5P model is trained using the Weka package 1

and the default settings for M5P decision-trees
(weka.classifiers.trees.M5P). The SVR model is
trained using the LIBSVM toolkit 2. The follow-
ing options are used: “-s 3” (ε-SVR) and “-t 2” (ra-
dial basis function). The following parameters were
optimized via 5-fold cross-validation on the train-
ing data: “-c cost”, the parameter C of ε-SVR; “-g
gamma”, the γ parameter of the kernel function; “-p
epsilon”, the ε for the loss-function of ε-SVR.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Systems Ranking Scoring
DeltaAvg Spearman MAE RMSE Predict. Interval

17 BFs with M5P 0.53 0.56 0.69 0.83 [2.3-4.9]
17 BFs with SVR 0.55 0.58 0.69 0.82 [2.0-5.0]

best-system 0.63 0.64 0.61 0.75 [1.7-5.0]

Table 1: Performance of the Baseline Features using M5P and SVR models on the test set.

The results in Table 1 are compared against the
“best-system” submission, in order to offer a com-
parison point. The “17 BFs with SVM” system ac-
tually participated as an entry in the shared-task, rep-
resenting the current state-of-the-art in MT quality-
prediction. This system has been ranked 6th (out of
17 entries) in the Ranking task, and 8th (out of 19
entries) in the Scoring task.

2.2 The Decoder Features

The current Quality Estimation task has been de-
fined as a glass-box task. That is, the prediction
component has access to everything related to the
internal workings of the MT system for which the
quality prediction is made. As such, we have cho-
sen to use the internal scores of the Moses 3 decoder
(available to all the participants in the shared-task)
as a distinct set of features. These features are the
following:

MF1 Distortion cost

MF2 Word penalty cost

MF3 Language-model cost

MF4 Cost of the phrase-probability of source given
target Φ(s|t)

MF5 Cost of the word-probability of source given
target Φlex(s|t)

MF6 Cost of the phrase-probability of target given
source Φ(t|s)

MF7 Cost of the word-probability of target given
source Φlex(t|s)

MF8 Phrase penalty cost
3http://www.statmt.org/moses/

These features are then entered into a feature-
selection component that decides which feature set
to use for achieving optimal performance.

The results in Table 2 present the performance
on the test set of the Moses features (with an M5P
model), presented against the “best-system” sub-
mission. These numbers indicate that the Moses-
internal features, by themselves, are fueling a QP
system that surpasses the performance of the strong
“baseline” system. We note here that the “8 MFs
with M5P” system would have been ranked 4th (out
of 17 entries) in the Ranking task, and 5th (out of 19
entries) in the Scoring task.

2.3 Language Weaver Features

In addition to the features presented until this point,
we have created and tested additional features that
helped our systems achieve improved performance.
In addition to the SMT training corpus, these fea-
tures also use the SMT tuning dev set (henceforth
called Devsrc and Devtrg). These features are the
following:

LF1 number of out-of-vocabulary tokens in the
source sentence

LF2 LM perplexity for the source sentence

LF3 LM perplexity for the target sentence

LF4 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores (i.e., BLEU score without
brevity-penalty) of source sentence against the
sentences of SMTsrc used as “references”

LF5 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of target translation against the
sentences of SMTtrg used as “references”
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Systems Ranking Scoring
DeltaAvg Spearman-Corr MAE RMSE Predict. Interval

8 MFs with M5P 0.58 0.58 0.65 0.81 [1.8-5.0]

best-system 0.63 0.64 0.61 0.75 [1.7-5.0]

Table 2: Performance of the Moses-based Features with an M5P model on the test set.

LF6 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of source sentence against the
top BLEU-scoring quartile of Devsrc

LF7 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of target translation against the
top BLEU-scoring quartile of Devtrg

LF8 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of source sentence against the
bottom BLEU-scoring quartile of Devsrc

LF9 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of target translation against the
bottom BLEU-scoring quartile Devtrg

LF10 geometric mean (λ-smoothed) of 1-to-4–gram
precision scores of target translation against a
pseudo-reference produced by a second MT
Eng-Spa system

LF11 count of one-to-one (O2O) word alignments
between source and target translation

LF12 ratio of O2O alignments over source sentence

LF13 ratio of O2O alignments over target translation

LF14 count of O2O alignments with Part-of-Speech–
agreement

LF15 ratio of O2O alignments with Part-of-Speech–
agreement over O2O alignments

LF16 ratio of O2O alignments with Part-of-Speech–
agreement over source

LF17 ratio of O2O alignments with Part-of-Speech–
agreement over target

Most of these features have been shown to help
Quality Prediction performance, see (Soricut and
Echihabi, 2010) and (Bach et al., 2011). Some of

them are inspired from word-based confidence esti-
mation, in which the alignment consensus between
the source words and target-translation words are
informative indicators for gauging the quality of a
translation hypothesis. The one-to-one (O2O) word
alignments are obtained from the decoding logs of
Moses. We use the TreeTagger to obtain Spanish
POS tags4 and a maximum-entropy POS tagger for
English. Since Spanish and English POS tag sets
are different, we normalize their fine-grained POS
tag sets into a coarser tag set by mapping the orig-
inal POS tags into more general linguistic concepts
such as noun, verb, adjective, adverb, preposition,
determiner, number, and punctuation.

3 The Models

3.1 The M5P Prediction Model

Regression-trees built using the M5P algo-
rithm (Wang and Witten, 1997) have been previ-
ously shown to give good QP performance (Soricut
and Echihabi, 2010). For these models, the num-
ber of linear equations used can provide a good
indication whether the model overfits the training
data. In Table 3, we compare the performance of
several M5P models: one trained on all 42 features
presented in Section 2, and two others trained on
only 15 and 14 features, respectively (selected using
the method described in Section 3.2). We also
present the number of linear equations (L.Eq.) used
by each model. Aside from the number of features
they employ, these models were trained under
identical conditions: default parameters of the Weka
implementation, and 1527 training instances (305
instances were held-out for the feature-selection
step, from the total 1832 labeled instances available
for the shared-task).

As the numbers in Table 3 clearly show, the set of
4http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Systems #L.Eq. Dev Set Test Set
DeltaAvg MAE DeltaAvg MAE

42 FFs with M5P 10 0.60 0.58 0.56 0.64
(best-system) 15 FFs with M5P 2 0.63 0.52 0.63 0.61

14 FFs with M5P 6 0.62 0.50 0.61 0.62

Table 3: M5P-model performance for different feature-function sets (15-FFs ∈ 42-FFs; 14-FFs ∈ 42-FFs).

feature-functions that an M5P model is trained with
matters considerably. On both our development set
and the official test set, the 15-FF M5P model out-
performs the 42-FF model (even if 15-FF ∈ 42-FF).
The 42-FF model would have been ranked 5th (out
of 17 entries) in the Ranking task, and also 5th (out
of 19 entries) in the Scoring task. In comparison, the
15-FF model (feature set optimized for best perfor-
mance under the DeltaAvg metric) was our official
M5P submission (SDLLW M5PBestDeltaAvg), and
ranked 1st in the Ranking task and also 1st in the
Scoring task. The 14-FF model (also a subset of the
42-FF set, optimized for best performance under the
MAE metric) was not part of our submission, but
would have been ranked 2nd on both the Ranking
and Scoring tasks.

The number of linear equations used (see #L.Eq.
in Table 3) is indicative for our results. When using
42 FFs, the M5P model seems to overfit the train-
ing data (10 linear equations). In contrast, the model
trained on a subset of 15 features has only 2 linear
equations. This latter model is less prone to overfit-
ting, and performs well given unseen test data. The
same number for the 14-FF model indicates slight
overfit on the training and dev data: with 6 equa-
tions, this model has the best MAE numbers on the
Dev set, but slightly worse MAE numbers on the
Test score compared to the 15-FF model.

3.2 Feature Selection

As we already pointed out, some of the features of
the entire 42-FF set are highly overlapping and cap-
ture roughly the same amount of information. To
achieve maximum performance given this feature-
set, we applied a computationally-intensive feature-
selection method. We have used the two official
metrics, DeltaAvg and MAE, and a development set
of 305 instances to perform an extensive feature-

selection procedure that directly optimizes the two
official metrics using M5P regression-trees.

The overall space that needs to be explored for 42
features is huge, on the order of 242 possible com-
binations. We performed the search in this space in
several steps. In a first step, we eliminated the obvi-
ously overlapping features (e.g., BF5 and MF3 are
both LM costs of the target translation), and also
excluded the POS-based features (LF14-LF17, see
Section 2.3). This step reduced the overall num-
ber of features to 24, and therefore left us with an
order of 224 possible combinations. Next, we ex-
haustively searched all these combinations by build-
ing and evaluating M5P models. This operation
is computationally-intensive and takes approxima-
tively 60 hours on a cluster of 800 machines. At
the conclusion of this step, we ranked the results
and considered the top 64 combinations. The perfor-
mance of these top combinations was very similar,
and a set of 15 features was selected as the superset
of active feature-functions present in most of the top
64 combinations.

DeltaAvg optim. BF1 BF3 BF4 BF6 BF12
BF13 BF14 MF3 MF4 MF6
LF1 LF10 LF14 LF15 LF16

MAE optim. BF1 BF3 BF4 BF6 BF12
BF14 BF16 MF3 MF4 MF6
LF1 LF10 LF14 LF17

Table 4: Feature selection results.

The second round of feature selection consid-
ers these 15 feature-functions plus the 4 POS-based
feature-functions, for a total of 19 features and there-
fore a space of 219 possible combinations (215 of
these already covered by the first search pass). A
second search procedure was executed exhaustively
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Dev Set Test Set
SVR Model (C;γ;ε) #S.V. DeltaAvg MAE DeltaAvg MAE

1.0 ; 0.00781; 0.50 695 0.62 0.52 0.60 0.66
1.74; 0.00258; 0.3299 952 0.63 0.51 0.61 0.64
8.0 ; 0.00195; 0.0078 1509 0.64 0.50 0.60 0.68
16.0; 0.00138; 0.0884 1359 0.63 0.51 0.59 0.70

Table 5: SVR-model performance for dev and test sets.

over the set of all the new possible combinations.
In the end, we selected the winning feature-function
combination as our final feature-function sets: 15
features for DeltaAvg optimization and 14 features
for MAE optimization. They are given in Table 4,
using the feature id-s given in Section 2. The perfor-
mance of these two feature-function sets using M5P
models can be found in Table 3.

3.3 The SVM Prediction Model

The second submission of our team consists of rank-
ings and scores produced by a system using an ε-
SVM regression model (ε-SVR) and a subset of 19
features. This model is trained on 1,527 training
examples by the LIBSVM package using radial ba-
sis function (RBF) kernel. We have found that the
feature-set obtained by the feature-selection opti-
mization for M5P models described in Section 3.2
does not achieve the same performance for SVR
models on our development set. Therefore, we
have performed our SVR experiments using a hand-
selected set of features: 9 features from the BF fam-
ily (BF1 BF3 BF4 BF6 BF10 BF11 BF12 BF14
BF16); all 8 features from the MF family; and 2 fea-
tures from the LF family (LF1 LF10).

We optimize the three hyper parameters C, γ, and
ε of the SVR method using a grid-search method and
measure their performance on our development set
of 305 instances. The C parameter is a penalty fac-
tor: if C is too high, we have a high penalty for non-
separable points and may store many support vec-
tors and therefore overfit the training data; if C is
too low, we may end up with a model that is poorly
fit. The ε parameter determines the level of accuracy
of the approximated function; however, getting too
close to zero may again overfit the training data. The
γ parameter relates to the RBF kernel: large γ val-

ues give the model steeper and more flexible kernel
functions, while small gamma values give the model
smoother functions. In general, C, ε, and γ are all
sensitive parameters and instantiate ε-SVR models
that may behave very differently.

In order to cope with the overfitting issue given
a small amount of training data and grid search op-
timization, we train our models with 10-fold cross
validation and restart the tuning process several
times using different starting points and step sizes.
We select the best model parameters based on a cou-
ple of indicators: the performance on the develop-
ment set and the number of support vectors of the
model. In Table5 we present the performance of dif-
ferent model parameters on both the development
set and the official test set. Our second submis-
sion (SDLLW SVM), which placed 2nd in both the
Ranking and the Scoring tasks, is the entry in bold
font. It was chosen based on good performance on
the Dev set and also a setting of the (C, γ, ε) pa-
rameters that provides a number of support vectors
that is neither too high nor too low. As a contrastive
point, the model on the row below it uses 1,509 sup-
port vectors extracted from 1,527 training vectors,
which represents a clear case of overfitting. Indeed,
the performance of this model is marginally better
on the Dev set, but ends up underperforming on the
Test data.

4 Conclusions

The WMT 2012 Quality Estimation shared-task pro-
vided the opportunity for the comparing different
QP systems using shared datasets and standardized
evaluation metrics. Our participation in this shared-
task revealed two important aspects of Quality Pre-
diction for MT that we regard as important for the
future. First, our experiments indicated that the
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Moses-internal features, by themselves, can fuel a
QP-system that surpasses the performance of the
strong “baseline” system used in this shared task to
represent state-of-the-art performance in MT qual-
ity prediction. This is a surprising finding, consid-
ering that these decoder-internal features have been
primarily designed to gauge differences in transla-
tion quality when starting from the same source sen-
tence. In contrast, for quality-prediction tasks like
ranking one needs to gauge differences in quality of
translations of different source sentences.

The second aspect relates to the importance of
feature selection. Given the availability and good
scalability of Machine Learning toolkits today, it
is tempting to throw as much features as possible
at this problem and let the built-in mechanisms of
these learning algorithms deal with issues relating
to feature overlapping, training-data overfitting, etc.
However, these learning algorithms have their own
limitations in these regards, and, in conjunction with
the limited availability of the labeled data, can easily
produce models that are underperforming on blind
tests. There is a need for careful engineering of
the models and evaluation of the resulting perfor-
mance in order to achieve optimal performance us-
ing the current state-of-the-art supervised learning
techniques.
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