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Abstract

This paper describes the University of
Cambridge submission to the Eighth
Workshop on Statistical Machine Transla-
tion. We report results for the Russian-
English translation task. We use mul-
tiple segmentations for the Russian in-
put language. We employ the Hadoop
framework to extract rules. The decoder
is HiFST, a hierarchical phrase-based de-
coder implemented using weighted finite-
state transducers. Lattices are rescored
with a higher order language model and
minimum Bayes-risk objective.

1 Introduction

This paper describes the University of Cam-
bridge system submission to the ACL 2013
Eighth Workshop on Statistical Machine Transla-
tion (WMT13). Our translation system is HiFST
(Iglesias et al., 2009), a hierarchical phrase-based
decoder that generates translation lattices directly.
Decoding is guided by a CYK parser based on a
synchronous context-free grammar induced from
automatic word alignments (Chiang, 2007). The
decoder is implemented with Weighted Finite
State Transducers (WFSTs) using standard op-
erations available in the OpenFst libraries (Al-
lauzen et al., 2007). The use of WFSTs allows
fast and efficient exploration of a vast translation
search space, avoiding search errors in decoding.
It also allows better integration with other steps
in our translation pipeline such as 5-gram lan-
guage model (LM) rescoring and lattice minimum
Bayes-risk (LMBR) decoding (Blackwood, 2010).

We participate in the Russian-English transla-
tion shared task in the Russian-English direction.
This is the first time we train and evaluate a sys-
tem on this language pair. This paper describes the
development of the system.

The paper is organised as follows. Section 2
describes each step in the development of our sys-
tem for submission, from pre-processing to post-
processing and Section 3 presents and discusses
results.

2 System Development

2.1 Pre-processing

We use all the Russian-English parallel data avail-
able in the constraint track. We filter out non
Russian-English sentence pairs with the language-
detection library.2 A sentence pair is filtered out if
the language detector detects a different language
with probability more than 0.999995 in either the
source or the target. This discards 78543 sen-
tence pairs. In addition, sentence pairs where the
source sentence has no Russian character, defined
by the Perl regular expression [\x0400-\x04ff],
are discarded. This further discards 19000 sen-
tence pairs.

The Russian side of the parallel corpus is to-
kenised with the Stanford CoreNLP toolkit.3 The
Stanford CoreNLP tokenised text is additionally
segmented with Morfessor (Creutz and Lagus,
2007) and with the TreeTagger (Schmid, 1995).
In the latter case, we replace each token by its
stem followed by its part-of-speech. This of-
fers various segmentations that can be taken ad-
vantage of in hypothesis combination: CoreNLP,
CoreNLP+Morfessor and CoreNLP+TreeTagger.
The English side of the parallel corpus is tokenised
with a standard in-house tokeniser. Both sides of
the parallel corpus are then lowercased, so mixed
case is restored in post-processing.

Corpus statistics after filtering and for various
segmentations are summarised in Table 1.

2http://code.google.com/p/language-detection/
3http://nlp.stanford.edu/software/corenlp.shtml

200



Lang Segmentation # Tokens # Types
RU CoreNLP 47.4M 1.2M
RU Morfessor 50.0M 0.4M
RU TreeTagger 47.4M 1.5M
EN Cambridge 50.4M 0.7M

Table 1: Russian-English parallel corpus statistics
for various segmentations.

2.2 Alignments
Parallel data is aligned using the MTTK toolkit
(Deng and Byrne, 2008). We train a word-
to-phrase HMM model with a maximum phrase
length of 4 in both source-to-target and target-to-
source directions. The final alignments are ob-
tained by taking the union of alignments obtained
in both directions.

2.3 Rule Extraction and Retrieval
A synchronous context-free grammar (Chiang,
2007) is extracted from the alignments. The con-
straints are set as in the original publication with
the following exceptions:

• phrase-based rule maximum number of
source words: 9

• maximum number of source element (termi-
nal or nonterminal): 5

• maximum span for nonterminals: 10

Maximum likelihood estimates for the transla-
tion probabilities are computed using MapReduce.
We use a custom Hadoop-based toolkit which im-
plements method 3 of Dyer et al. (2008). Once
computed, the model parameters are stored on disk
in the HFile format (Pino et al., 2012) for fast
querying. Rule extraction and feature computa-
tion takes about 2h30. The HFile format requires
data to be stored in a key-value structure. For the
key, we use shared source side of many rules. The
value is a list of tuples containing the possible tar-
gets for the source key and the associated param-
eters of the full rule. The query set of keys for
the test set is all possible source phrases (includ-
ing nonterminals) found in the test set.

During HFile querying we add other features.
These include IBM Model 1 (Brown et al., 1993)
lexical probabilities. Loading these models in
memory doesn’t fit well with the MapReduce
model so lexical features are computed for each

test set rather than for the entire parallel corpus.
The model parameters are stored in a client-server
based architecture. The client process computes
the probability of the rule by querying the server
process for the Model 1 parameters. The server
process stores the model parameters completely
in memory so that parameters are served quickly.
This architecture allows for many low-memory
client processes across many machines.

2.4 Language Model

We used the KenLM toolkit (Heafield et al., 2013)
to estimate separate 4-gram LMs with Kneser-Ney
smoothing (Kneser and Ney, 1995), for each of the
corpora listed in Tables 2 (self-explanatory abbre-
viations). The component models were then in-
terpolated with the SRILM toolkit (Stolcke, 2002)
to form a single LM for use in first-pass trans-
lation decoding. The interpolation weights were
optimised for perplexity on the news-test2008,
newstest2009 and newssyscomb2009 development
sets. The weights reflect both the size of the com-
ponent models and the genre of the corpus the
component models are trained on, e.g. weights are
larger for larger corpora in the news genre.

Corpus # Tokens
EU + NC + UN + CzEng + Yx 652.5M
Giga + CC + Wiki 654.1M
News Crawl 1594.3M
afp 874.1M
apw 1429.3M
cna + wpb 66.4M
ltw 326.5M
nyt 1744.3M
xin 425.3M
Total 7766.9M

Table 2: Statistics for English monolingual cor-
pora.

2.5 Decoding

For translation, we use the HiFST decoder (Igle-
sias et al., 2009). HiFST is a hierarchical decoder
that builds target word lattices guided by a prob-
abilistic synchronous context-free grammar. As-
suming N to be the set of non-terminals and T the
set of terminals or words, then we can define the
grammar as a set R = {R} of rules R : N →
〈γ,α〉 / p, where N ∈ N, γ, α ∈ {N ∪T}+ and p
the rule score.
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HiFST translates in three steps. The first step
is a variant of the CYK algorithm (Chappelier and
Rajman, 1998), in which we apply hypothesis re-
combination without pruning. Only the source
language sentence is parsed using the correspond-
ing source-side context-free grammar with rules
N → γ. Each cell in the CYK grid is specified
by a non-terminal symbol and position: (N, x, y),
spanning sx+y−1

x on the source sentence s1...sJ .
For the second step, we use a recursive algo-

rithm to construct word lattices with all possi-
ble translations produced by the hierarchical rules.
Construction proceeds by traversing the CYK grid
along the back-pointers established in parsing. In
each cell (N, x, y) of the CYK grid, we build a
target language word lattice L(N, x, y) containing
every translation of sx+y−1

x from every derivation
headed by N . For efficiency, this lattice can use
pointers to lattices on other cells of the grid.

In the third step, we apply the word-based LM
via standard WFST composition with failure tran-
sitions, and perform likelihood-based pruning (Al-
lauzen et al., 2007) based on the combined trans-
lation and LM scores.

We are using shallow-1 hierarchical gram-
mars (de Gispert et al., 2010) in our experiments.
This model is constrained enough that the decoder
can build exact search spaces, i.e. there is no prun-
ing in search that may lead to spurious undergen-
eration errors.

2.6 Features and Parameter Optimisation

We use the following standard features:

• language model

• source-to-target and target-to-source transla-
tion scores

• source-to-target and target-to-source lexical
scores

• target word count

• rule count

• glue rule count

• deletion rule count (each source unigram, ex-
cept for OOVs, is allowed to be deleted)

• binary feature indicating whether a rule is ex-
tracted once, twice or more than twice (Ben-
der et al., 2007)

No alignment information is used when com-
puting lexical scores as done in Equation (4) in
(Koehn et al., 2005). Instead, the source-to-target
lexical score is computed in Equation 1:

s(ru, en) =
1

(E + 1)R

R∏

r=1

E∑

e=0

pM1(ene|rur)

(1)
where ru are the terminals in the Russian side of
a rule, en are the terminals in the English side of
a rule, including the null word, R is the number
of Russian terminals, E is the number of English
terminals and pM1 is the IBM Model 1 probability.

In addition to these standard features, we also
use provenance features (Chiang et al., 2011). The
parallel data is divided into four subcorpora: the
Common Crawl (CC) corpus, the News Commen-
tary (NC) corpus, the Yandex (Yx) corpus and the
Wiki Headlines (Wiki) corpus. For each of these
subcorpora, source-to-target and target-to-source
translation and lexical scores are computed. This
requires computing IBM Model 1 for each sub-
corpus. In total, there are 28 features, 12 standard
features and 16 provenance features.

When retrieving relevant rules for a particular
test set, various thresholds are applied, such as
number of targets per source or translation prob-
ability cutoffs. Thresholds involving source-to-
target translation scores are applied separately for
each provenance and the union of all surviving
rules for each provenance is kept. This strategy
gives slight gains over using thresholds only for
the general translation table.

We use an implementation of lattice minimum
error rate training (Macherey et al., 2008) to op-
timise under the BLEU score (Papineni et al.,
2001) the feature weights with respect to the odd
sentences of the newstest2012 development set
(newstest2012.tune). The weights obtained match
our expectation, for example, the source-to-target
translation feature weight is higher for the NC cor-
pus than for other corpora since we are translating
news.

2.7 Lattice Rescoring

The HiFST decoder is set to directly generate
large translation lattices encoding many alterna-
tive translation hypotheses. These first-pass lat-
tices are rescored with second-pass higher-order
LMs prior to LMBR.
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2.7.1 5-gram LM Lattice Rescoring
We build a sentence-specific, zero-cutoff stupid-
backoff (Brants et al., 2007) 5-gram LMs esti-
mated over the data described in section 2.4. Lat-
tices obtained by first-pass decoding are rescored
with this 5-gram LM (Blackwood, 2010).

2.7.2 LMBR Decoding
Minimum Bayes-risk decoding (Kumar and
Byrne, 2004) over the full evidence space of the 5-
gram rescored lattices is applied to select the trans-
lation hypothesis that maximises the conditional
expected gain under the linearised sentence-level
BLEU score (Tromble et al., 2008; Blackwood,
2010). The unigram precision p and average re-
call ratio r are set as described in Tromble et al.
(2008) using the newstest2012.tune development
set.

2.8 Hypothesis Combination
LMBR decoding (Tromble et al., 2008) can also be
used as an effective framework for multiple lattice
combination (Blackwood, 2010). We used LMBR
to combine translation lattices produced by sys-
tems trained on alternative segmentations.

2.9 Post-processing
Training data is lowercased, so we apply true-
casing as post-processing. We used the disam-
big tool provided by the SRILM toolkit (Stolcke,
2002). The word mapping model which contains
the probability of mapping a lower-cased word
to its mixed-cased form is trained on all avail-
able data. A Kneser-Ney smoothed 4-gram lan-
guage model is also trained on the following cor-
pora: NC, News Crawl, Wiki, afp, apw, cna, ltw,
nyt, wpb, xin, giga. In addition, several rules are
manually designed to improve upon the output of
the disambig tool. First, casing information from
pass-through translation rules (for OOV source
words) is used to modify the casing of the output.
For example, this allows us to get the correct cas-
ing for the word Bundesrechnungshof. Other rules
are post-editing rules which force some words
to their upper-case forms, such as euro → Euro.
Post-editing rules are developed based on high-
frequency errors on the newstest2012.tune devel-
opment set. These rules give an improvement of
0.2 mixed-cased NIST BLEU on the development
set.

Finally, the output is detokenised before sub-
mission and Cyrillic characters are transliterated.

We assume for human judgment purposes that it
is better to have a non English word in Latin al-
phabet than in Cyrillic (e.g. uprazdnyayushchie);
sometimes, transliteration can also give a correct
output (e.g. Movember), especially in the case of
proper nouns.

3 Results and Discussion

Results are reported in Table 3. We use the inter-
nationalisation switch for the NIST BLEU scor-
ing script in order to properly lowercase the hy-
pothesis and the reference. This introduces a
slight discrepancy with official results going into
the English language. The newstest2012.test de-
velopment set consists of even sentences from
newstest2012. We observe that the CoreNLP
system (A) outperforms the other two systems.
The CoreNLP+Morfessor system (B) has a much
smaller vocabulary but the model size is compa-
rable to the system A’s model size. Translation
did not benefit from source side morphological de-
composition. We also observe that the gain from
LMBR hypothesis combination (A+B+C) is mini-
mal. Unlike other language pairs, such as Arabic-
English (de Gispert et al., 2009), we have not yet
found any great advantage in multiple morpho-
logical decomposition or preprocessing analyses
of the source text. 5-gram and LMBR rescoring
give consistent improvements. 5-gram rescoring
improvements are very modest, probably because
the first pass 4-gram model is trained on the same
data. As noted, hypothesis combination using the
various segmentations gives consistent but modest
gains over each individual system.

Two systems were submitted to the evalua-
tion. System A+B+C achieved a mixed-cased
NIST BLEU score of 24.6, which was the top
score achieved under this measure. System A sys-
tem achieved a mixed-cased NIST BLEU score of
24.5, which was the second highest score.

4 Summary

We have successfully trained a Russian-English
system for the first time. Lessons learned include
that simple tokenisation is enough to process the
Russian side, very modest gains come from com-
bining alternative segmentations (it could also be
that the Morfessor segmentation should not be per-
formed after CoreNLP but directly on untokenised
data), and reordering between Russian and En-
glish is such that a shallow-1 grammar performs
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Configuration newstest2012.tune newstest2012.test newstest2013
CoreNLP(A) 33.65 32.36 25.55
+5g 33.67 32.58 25.63
+5g+LMBR 33.98 32.89 25.89
CoreNLP+Morfessor(B) 33.21 31.91 25.33
+5g 33.28 32.12 25.44
+5g+LMBR 33.58 32.43 25.78
CoreNLP+TreeTagger(C) 32.92 31.54 24.78
+5g 32.94 31.85 24.97
+5g+LMBR 33.12 32.12 25.05
A+B+C 34.32 33.13 26.00

Table 3: Translation results, shown in lowercase NIST BLEU. Bold results correspond to submitted
systems.

competitively.
Future work could include exploring alterna-

tive grammars, applying a 5-gram Kneser-Ney
smoothed language model directly in first-pass de-
coding, and combining alternative segmentations
that are more diverse from each other.
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